With the continuous development of society, the cooperation of different dimensions is urgently needed. Analysis and modeling of team cooperation model and performance evaluation are especially important for competitive sport. In this paper, a football team’s attacking mode and the team performance were assessed using network science methodologies. The match process was analyzed by using the data of Team A (given in the form of attachment due to excessive file size) and the method of complex network science. Each player was regarded as a node in the network, and the interaction among players was considered as the connection to the network. This method directly reflected the favorable formation of the team and the interaction frequency among members. Then, a team performance evaluation model was established using the backpropagation neural network (BPNN) and the uncrossed analytic hierarchy process (U-AHP) method based on the factors including the number of passes and successful pass rate. The team performance was comprehensively rated from two levels: member and team level. Analysis from established models indicated that Team A had a higher probability of winning when using the “4-4-2” offensive strategy and performance evaluation analysis indicated that more passes and higher pass success rates were more beneficial to win the game. Following the model developed in this study, some suggestions were given from the perspectives of team strategy, attack mode, cooperation, and incentive mode.
Two-dimensional ferromagnetic van der Waals (2D vdW) heterostructures have opened new avenues for creating artificial materials with unprecedented electrical and optical functions beyond the reach of isolated 2D atomic layered materials, and for manipulating spin degree of freedom at the limit of few atomic layers, which empower next-generation spintronic and memory devices. However, to date, the electronic properties of 2D ferromagnetic heterostructures still remain elusive. Here, we report an unambiguous magnetoresistance behavior in CrI3/graphene heterostructures, with a maximum magnetoresistance ratio of 2.8%. The magnetoresistance increases with increasing magnetic field, which leads to decreasing carrier densities through Lorentz force, and decreases with the increase of the bias voltage. This work highlights the feasibilities of applying two-dimensional ferromagnetic vdW heterostructures in spintronic and memory devices.
The distribution of load has high uncertainty, which is the main cause of a rack structure’s instabilities. The objective of this study was to identify the most unfavorable and favorable load distributions on steel storage racks with and without bracings under seismic loading through a stochastic optimization—a genetic algorithm (GA). This paper begins with optimizing the most unfavorable and favorable load distributions on the steel storage racks with and without bracings using GA. Based on the optimization results, the failure position and seismic performance influencing factors, such as the load distributions on the racks and at hazardous positions, are then identified. In addition, it is demonstrated that the maximum stress ratio of the uprights under the most unfavorable load distribution is higher than that under the full-load normal design, and it is not the case that the higher the center of gravity the more dangerous the steel storage rack is, demonstrating that the load distribution pattern has a significant impact on the structural safety of steel storage racks. The statistics of the distributions of the load generated during the optimization of the GA and the contours of the probability distributions of the load are generated. Combining the probability distribution contours and the GA’s optimization findings, the “convex” distribution hazard model and the “concave” distribution safety model for a steel storage rack with bracings are identified. In addition, the features of the distribution hazard model and the load distribution safety model are also identified for steel storage racks without bracings.
To study the effect of transverse stiffness on the mechanical behavior of reinforced concrete rigid-frame arch bridge, an integral model was set up by using the spatial finite element analysis software, four different spans rigid frame arch bridges were analyzed and the influence of transverse load distribution coefficients on different deck stiffness was studied. Compared with the results of deflection method, it shows that the transverse load distribution coefficient calculated by elastically supported continuous beam method is smaller; also, the transverse stiffness is directly related to the magnitude of transverse load distribution of the bridge and a serious difference of the forces calculated with traditional design theory, which should be modified in the design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.