In plants, the role of anthocyanins trafficking in response to high temperature has been rarely studied, and therefore poorly understood. Red-fleshed kiwifruit has stimulated the world kiwifruit industry owing to its appealing color. However, fruit in warmer climates have been found to have poor flesh coloration, and the factors responsible for this response remain elusive. Partial correlation and regression analysis confirmed that accumulative temperatures above 25 °C (T25) was one of the dominant factors inhibiting anthocyanin accumulation in red-fleshed Actinidia chinensis, 'Hongyang'. Expression of structural genes, AcMRP and AcMYB1 in inner pericarp sampled from the two high altitudes (low temperature area), was notably higher than the low altitude (high temperature area) during fruit coloration. AcMYB1 and structural genes coordinate expression supported the MYB-bHLH (basic helix-loop-helix)-WD40 regulatory complex mediated downregulation of anthocyanin biosynthesis induced by high temperatures in kiwifruit. Moreover, cytological observations using the light and transmission electronic microscopy showed that there were a series of anthocyanic vacuolar inclusion (AVI)-like structures involved in their vacuolization process and dissolution of the pigmented bodies inside cells of fruit inner pericarp. Anthocyanin transport was inhibited by high temperature via retardation of vacuolization or reduction in AIV-like structure formation. Our findings strongly suggested that complex multimechanisms influenced the effects of high temperature on red-fleshed kiwifruit coloration.
The R2R3 MYB genes associated with the flavonoid/anthocyanidin pathway feature two repeats, and represent the most abundant classes of MYB genes in plants; however, the physiological role and regulatory function of most R2R3 MYBs remain poorly understood in kiwifruit (Actinidia). Here, genome-wide analysis identified 155 R2R3-MYBs in the ‘Red 5′ version of the Actinidia chinensis genome. Out of 36 anthocyanin-related AccR2R3-MYBs, AcMYB10 was the most highly expressed in inner pericarp of red-fleshed kiwifruit. The expression of AcMYB10 was highly correlated with anthocyanin accumulation in natural pigmentation during fruit ripening and light-/temperature-induced pigmentation in the callus. AcMYB10 is localized in the nuclei and has transcriptional activation activity. Overexpression of AcMYB10 elevates anthocyanin accumulation in transgenic A. chinensis. In comparison, A. chinensis fruit infiltrated with virus-induced gene silencing showed delayed red coloration, lower anthocyanin content, and lower expression of AcMYB10. The transient expression experiment in Nicotiana tabacum leaves and Actinidia arguta fruit indicated the interaction of AcMYB10 with AcbHLH42 might strongly activate anthocyanin biosynthesis by activating the transcription of AcLDOX and AcF3GT. In conclusion, this study provides novel molecular information about R2R3-MYBs in kiwifruit, advances our understanding of light- and temperature-induced anthocyanin accumulation, and demonstrates the important function of AcMYB10 in the biosynthesis of anthocyanin in kiwifruit.
This study investigated the flavonoid compounds in Actinidia chinensis and Actinidia arguta fruits. A total of 125 flavonoids, including 9 anthocyanins, 12 catechins, 17 flavanones, 48 flavones (including 14 flavone C-glycosides), 29 flavonols, 6 isoflavones, and 4 proanthocyanidins, were identified in "Hongyang" kiwifruit (red flesh), "Jintao" kiwifruit, "Mini Amethyst" kiwiberry (purple flesh), and "Kuilv" kiwiberry. Thirty-nine metabolites showed significantly different contents between "Hongyang" and "Jintao," and 38 of them showed higher content in "Hongyang," whereas 39 metabolites showed significantly different contents between "Mini Amethyst" and "Kuilv," and 31 of them showed higher content in "Mini Amethyst." This result indicates the superior nutritional value of the pigmented kiwi cultivars in terms of flavonoids. Multivariate statistical analysis indicates that the variation in flavonoid profiles contributes to the pigmentation phenotypes of "Hongyang" and "Mini Amethyst." Further comparative transcriptomic analysis revealed that structural genes in the anthocyanin synthesis pathway (AcF3H, AcF3′H, AcDFR, AcUFGT) and transcription factors (AcMYB10, AcbHLH5) may be involved in the pigmentation of the red-fleshed A. chinensis, whereas AaF3H, AaF3GT, and AaMYB110 may play important roles in the pigmentation of the purple-fleshed A. arguta. This study provides broader insight into the variation in flavonoid profiles among kiwifruit/berry, evaluates the flavonoid nutrition of the four cultivars, and provides additional evidence for the correlation between the genes and metabolites involved in flavonoid synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.