BACKGROUND:The objective of this study was to develop a comprehensive and simple method for the simultaneous determination of 59 veterinary drug residues in livestock products for safety management. METHODS AND RESULTS: For sample preparation, we used a modified liquid extraction method, according to which the sample was extracted with 80% acetonitrile followed by incubation at -20℃ for 30 min. After centrifugation, an aliquot of the extract was evaporated to dryness at 40℃ and analyzed using liquid chromatography combined with tandem mass spectrometry. The method was validated at three concentration levels for beef, pork, chicken, egg, and milk in accordance with the Codex Alimentarius Commission/Guidelines 71-2009. Quantitative analysis was performed using a matrix-matched calibration. As a results, at least 52 (77.6%) out of 66 com-pounds showed the proper method validation results in terms of both recovery of the target compound and coefficient of variation required by Codex guidelines in livestock products. The limit of quantitation of the method ranged from 0.2 to 1119.6 ng g-1 for all matrices. CONCLUSION(S): This method was accurate, effective, and comprehensive for 59 veterinary drugs determination in livestock products, and can be used to investigate veterinary drugs from different chemical families for safety management in livestock products.
The microstructural evolutions in self-catalyzed GaAs nanowires (NWs) were investigated by using in situ heating transmission electron microscopy (TEM). The morphological changes of the self-catalyst metal gallium (Ga) droplet, the GaAs NWs, and the atomic behavior at the interface between the self-catalyst metal gallium and GaAs NWs were carefully studied by analysis of high-resolution TEM images. The microstructural change of the Ga-droplet/GaAs-NWs started at a low temperature of ∼200 °C. Formation and destruction of atomic layers were observed at the Ga/GaAs interface and slow depletion of the Ga droplet was detected in the temperature range investigated. Above 300 °C, the evolution process dramatically changed with time: The Ga droplet depleted rapidly and fast growth of zinc-blende (ZB) GaAs structures were observed in the droplet. The Ga droplet was completely removed with time and temperature. When the temperature reached ∼600 °C, the decomposition of GaAs was detected. This process began in the wurtzite (WZ) structure and propagated to the ZB structure. The morphological and atomistic behaviors in self-catalyzed GaAs NWs were demonstrated based on thermodynamic considerations, in addition to the effect of the incident electron beam in TEM. Finally, GaAs decomposition was demonstrated in terms of congruent vaporization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.