Marine zooplankton has important ecological and economic value. The observation and automatic image recognition technology of marine zooplankton is an important mean to acquire data such as species, quantity, spatial distribution and behavioral postures of zooplankton, and is an important support for marine scientific research. Digital holography has an innate advantage of refocusing and reconstruction, which is suitable for deep learning and living zooplankton recognition. In this study, a large number of holographic images was trained by using the improved YOLOv2 model, and after test, the study achieved satisfactory results: the models trained by the images with sharpness assessment score of 0.6 or higher, have precision rate above 94% and a recall rate above 88%. This study mainly discusses: (1) the detection method of moving targets to acquire the images of moving zooplankton; (2) the two factors that affect the holographic images recognition results, mean (pixel mean of images) subtraction operation and image sharpness, and the no-reference sharpness assessment based on structural similarity for holographic images; (3) the relationship between sharpness assessment index or mean subtraction and the recognition results.
In real life, people’s life gradually tends to be simple, so the convenience of online shopping makes more and more research begin to explore the convenience optimization of shopping, in which the fitting system is the research product. However, due to the immaturity of the virtual fitting system, there are a lot of problems, such as the expression of clothing color is not clear or deviation. In view of this, this paper proposes a 3D clothing color display model based on deep learning to support human modeling-driven. Firstly, the macro-micro adversarial network (MMAN) based on deep learning is used to analyze the original image, and then, the results are preprocessed. Finally, the 3D model with the original image color is constructed by using UV mapping. The experimental results show that the accuracy of the MMAN algorithm reaches 0.972, the established three-dimensional model is emotional enough, the expression of the clothing color is clear, and the difference between the color difference and the original image is within 0.01, and the subjective evaluation of volunteers is more than 90 points. The above results show that it is effective to use deep learning to build a 3D model with the original picture clothing color, which has great guiding significance for the research of character model modeling and simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.