We report the synthesis and characterization of a two-dimensional (2D) MX2Y2-type (M = metal, X, Y = N, S, O, and X ≠ Y) copper 1,3,5-triamino-2,4,6-benzenetriol metal–organic framework (Cu3(TABTO)2-MOF). The role of oxygen in the synthesis of this MOF was investigated. Copper metal is formed along with the MOF when the synthesis is done in argon as suggested by XRD. When the reaction was exposed to air with vigorous stirring, copper metal was not observed by XRD. However, if there is no stirring, then copper metal is formed, and we learned that this is because oxygen was not allowed to enter the solvent due to the formation of a MOF film at the air/water interface. For the sample synthesized in argon (Cu3(TABTO)2-Ar), an insulating Cu3(TABTO)2-Ar pellet (σ < 10–10 S cm–1) became a metallic conductor with an electrical conductivity of 0.78 S cm–1 at 300 K after exposure to iodine vapor. This work provides further insights into the role of oxygen in the synthesis of redox-active ligand-based MOFs, expands the family of 2D redox-active ligand-based electrically conductive MOFs, and offers more opportunities in sensing, photocatalytic, electronic, and energy-related applications.
Molybdenum oxides have various crystal structures and physical properties due to the multiple valence states of the 4d molybdenum. Among them, MoO2 has a distorted rutile structure with chemical stability and metallic behavior. In this study we grew epitaxial (100) MoO2 thin films on (0001) Al2O3 substrates. Through careful control of the Ar-partial pressure and growth temperature, we determined the optimal growth condition. From our structural assessments, MoO2 epitaxial thin films with high crystallinity can only be achieved in very narrow growth conditions such as 500˚C and 7 mTorr. The thin film prepared under optimal condition showed good metallic behavior, which was confirmed by electronic transport and optical reflectance measurements. A detailed electronic structure was also investigated by spectroscopic ellipsometry.
Stochastic inhomogeneous oxidation is an inherent characteristic of copper (Cu), often hindering color tuning and bandgap engineering of oxides. Coherent control of the interface between metal and metal oxide remains unresolved. Coherent propagation of an oxidation front in single‐crystal Cu thin film is demonstrated to achieve a full‐color spectrum for Cu by precisely controlling its oxide‐layer thickness. Grain‐boundary‐free and atomically flat films prepared by atomic‐sputtering epitaxy allow tailoring of the oxide layer with an abrupt interface via heat treatment with a suppressed temperature gradient. Color tuning of nearly full‐color red/green/blue indices is realized by precise control of the oxide‐layer thickness; the samples cover ≈50.4% of the standard red/green/blue color space. The color of copper/copper oxide is realized by the reconstruction of the quantitative yield color from the oxide “pigment” (complex dielectric functions of Cu2O) and light‐layer interference (reflectance spectra obtained from the Fresnel equations) to produce structural color. Furthermore, laser‐oxide lithography is demonstrated with micrometer‐scale linewidth and depth through local phase transformation to oxides embedded in the metal, providing spacing necessary for semiconducting transport and optoelectronics functionality.
An interesting van der Waals material, Ta2NiSe5 has been known one of strong excitonic insulator candidates since it has very small or zero bandgap and can have a strong exciton binding energy because of its quasi-one-dimensional crystal structure. Here we investigate a single crystal Ta2NiSe5 using optical spectroscopy. Ta2NiSe5 has quasi-one-dimensional chains along the a-axis. We have obtained anisotropic optical properties of a single crystal Ta2NiSe5 along the a- and c-axes. The measured a- and c-axis optical conductivities exhibit large anisotropic electronic and phononic properties. With regard to the a-axis optical conductivity, a sharp peak near 3050 cm−1 at 9 K, with a well-defined optical gap ( 1800 cm−1) and a strong temperature-dependence, is observed. With an increase in temperature, this peak broadens and the optical energy gap closes around ∼325 K (). The spectral weight redistribution with respect to the frequency and temperature indicates that the normalized optical energy gap () is . The temperature-dependent superfluid plasma frequency of the excitonic condensation in Ta2NiSe5 has been determined from measured optical data. Our study may pave new avenues in the future research on excitonic insulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.