Edited by Richard Cogdell
Keywords:Photodamage and PSII repair cycle STN8 kinase and PSII core proteins phosphorylation Proteases and D1 protein degradation Reactive oxygen species (ROS) Ultra-violet radiation a b s t r a c t Photosystem II (PSII) is vulnerable to high light (HL) illumination resulting in photoinhibition. In addition to photoprotection mechanisms, plants have developed an efficient PSII repair mechanism to save themselves from irreversible damage to PSII under abiotic stresses including HL illumination. The phosphorylation/dephosphorylation cycle along with subsequent degradation of photodamaged D1 protein to be replaced by the insertion of a newly synthesized copy of D1 into the PSII complex, is the core function of the PSII repair cycle. The exact mechanism of this process is still under discussion. We describe the recent progress in identifying the kinases, phosphatases and proteases, and in understanding their involvement in the maintenance of thylakoid structure and the quality control of proteins by PSII repair cycle during photoinhibition.
An unusual property, human leukemic cell-recognizing activity, associated with parasporal inclusions of a noninsecticidal Bacillus thuringiensis soil isolate was investigated, and a protein (named parasporin in this study) responsible for the activity was cloned. The parasporin, encoded by a gene 2,169 bp long, was a polypeptide of 723 amino acid residues with a predicted molecular weight of 81,045. The sequence of parasporin contained the five conserved blocks commonly found in B. thuringiensis Cry proteins; however, only very low homologies (<25%) between parasporin and the existing classes of Cry and Cyt proteins were detected. Parasporin exhibited cytocidal activity only when degraded by proteases into smaller molecules of 40 to 60 kDa. Trypsin and proteinase K activated parasporin, while chymotrypsin did not. The activated parasporin showed strong cytocidal activity against human leukemic T cells (MOLT-4) and human uterus cervix cancer cells (HeLa) but not against normal T cells.
SummaryAll organisms, including plants, perceive environmental stress, and they use this information to modify their behavior or development. Here, we demonstrate that Arabidopsis plants have memory functions related to repeated exposure to stressful concentrations of the phytohormone abscisic acid (ABA), which acts as a chemical signal. Repeated exposure of plants to ABA (40 lM for 2 h) impaired light-induced stomatal opening or inhibited the response to a light stimulus after ABA-entrainment under both dark/light cycle and continuous light. Moreover, there were transient expressions of the rd22 gene during the same periods under both the growing conditions. Such acquired information in ABA-entrained plants produced a long-term sensitization. When the time of light application was changed, a transient induction of the rd22 gene in plants after ABA-entrainment indicated that these were light-associated responses. These transient effects were also observed in kin1, rab18, and rd29B. The transient expression of AtNCED3, causing the accumulation of endogenous ABA, indicated a possible regulation by ABA-dependent pathways in ABA-entrained plants. An ABA immunoassay supported this hypothesis: ABA-entrained plants showed a transient increase in endogenous ABA level from 220 to 250 pmol g À1 fresh mass at 1±2 h of the training period, whereas ABAde®cient (aba2) mutants did not. Taking into account these results, we propose that plants have the ability to memorize stressful environmental experiences, and discuss the molecular events in ABA-entrained plants.
A water-soluble imidazolium-based fluorescent chemosensor senses RNA selectively through fluorescence enhancement over other biologically relevant biomolecules in aqueous solution at physiological pH 7.4. Fluorescence image detection of RNA in living cells such as onion cells, HeLa cells, and animal model cells was successfully demonstrated which displays a chelation-enhanced fluorescence effect. These affinities can be attributed to the strong electrostatic (C-H)(+)···A(-) ionic H-bonding and the aromatic moiety driven π-stacking of imidazolium-based cyclophane with the size-complementary major groove of RNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.