Theories are developed to evaluate Larmor frequency shifts, derived from geometric phases, in experiments to measure electric dipole moments (EDM's) of trapped, atoms, molecules, and neutrons. A part of these shifts is proportional to the applied electric field and can be interpreted falsely as an electric dipole moment. A comparison is made between our theoretical predictions for these shifts and some results from our recent experiments, which shows agreement to within the experimental errors of 15%. The comparison also demonstrates that some trapped particle EDM experiments have reached a sensitivity where stringent precautions are needed to minimize and control such false EDM's. Computer simulations of these processes are also described. They give good agreement with the analytical results and they extend the study by investigating the influence of varying surface reflection laws in the hard-walled traps considered. They also explore the possibility to suppress such false EDM's by introducing collisions with buffer gas particles. Some analytic results for frequency shifts proportional to the square of the E field are also given and there are results for the averaging of the B field in the absence of an E field.
Interactions à courte portée Physique des neutrons Les forces type-AxionWe consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments.
Article (Published Version) http://sro.sussex.ac.uk Alterev, I, Harris, Philip, Shiers, David and et al, (2009) Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields. Physical Review D, 80 (3). 032003. ISSN 1550-7998 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/16039/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version. Copyright and reuse:Sussex Research Online is a digital repository of the research output of the University.Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields We performed ultracold neutron storage measurements to search for additional losses due to neutron (n) to mirror-neutron (n 0 ) oscillations as a function of an applied magnetic field B. In the presence of a mirror magnetic field B 0 , ultracold neutron losses would be maximal for B % B 0 . We did not observe any indication for nn 0 oscillations and placed a lower limit on the oscillation time of nn 0 > 12:0sat 95% C.L. for any B 0 between 0 and 12:5 T.
We discuss the design and performance of a very sensitive low-field magnetometer based on the detection of free spin precession of gaseous, nuclear polarized 3 He or 129 Xe samples with a SQUID as magnetic flux detector. The device will be employed to control fluctuating magnetic fields and gradients in a new experiment searching for a permanent electric dipole moment of the neutron as well as in a new type of 3 He/ 129 Xe clock comparison experiment which should be sensitive to a sidereal variation of the relative spin precession frequency. Characteristic spin precession times after one day. Even in that sensitivity range, the magnetometer performance is statistically limited, and noise sources inherent to the magnetometer are not limiting. The reason is that free precessing 3 He ( 129 Xe) nuclear spins are almost completely decoupled from the environment. That makes this type of magnetometer in particular attractive for precision field measurements where a long-term stability is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.