Chemical accidents are major causes of environmental losses and have been debated due to the potential threat to human beings and environment. Compared with the single statistical analysis, co-word analysis of chemical accidents illustrates significant traits at various levels and presents data into a visual network. This study utilizes a co-word analysis of the keywords extracted from the Web crawling texts of environmental loss-related chemical accidents and uses the Pearson's correlation coefficient to examine the internal attributes. To visualize the keywords of the accidents, this study carries out a multidimensional scaling analysis applying PROXSCAL and centrality identification. The research results show that an enormous environmental cost is exacted, especially given the expected environmental loss-related chemical accidents with geographical features. Meanwhile, each event often brings more than one environmental impact. Large number of chemical substances are released in the form of solid, liquid, and gas, leading to serious results. Eight clusters that represent the traits of these accidents are formed, including "leakage," "poisoning," "explosion," "pipeline crack," "river pollution," "dust pollution," "emission," and "industrial effluent." "Explosion" and "gas" possess a strong correlation with "poisoning," located at the center of visualization map.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.