International audienceIn this paper, we introduce a new spatial modulation (SM) technique using one or two active antennas and multiple signal constellations. The proposed technique, which we refer to as Enhanced SM or ESM, conveys information bits not only by the index(es) of the active antenna(s), but also by the constellations transmitted from each of them. The main feature of ESM is that it uses a primary signal constellation during the single active antenna periods and some other secondary constellations during the periods with two active transmit antennas. The secondary signal constellations are derived from the primary constellation by means of geometric interpolation in the signal space. We give design examples using two and four transmit antennas and QPSK, 16QAM, and 64QAM as primary modulations. The proposed technique is compared to conventional SM as well as to spatial multiplexing (SMX), and the results indicate that in most cases, ESM provides a substantial performance gain over conventional SM and SMX while reducing the maximum-likelihood (ML) decoder complexity
Abstract-In this paper, we present three new signal designs for Enhanced Spatial Modulation (ESM), which was recently introduced by the present authors. The basic idea of ESM is to convey information bits not only by the index(es) of the active transmit antenna(s) as in conventional Spatial Modulation (SM), but also by the types of the signal constellations used. The original ESM schemes were designed with reference to single-stream SM and involved one or more secondary modulations in addition to the primary modulation. Compared to single-stream SM, they provided either higher throughput or improved signal-to-noise ratio (SNR). In the present paper, we focus on multi-stream SM (MSM) and present three new ESM designs leading to increasing SNR gains when they are operated at the same spectral efficiency. The secondary signal constellations used in the first two designs are based on a single geometric interpolation step in the signal constellation plane, while the third design also makes use of additional constellations derived through a second interpolation step. The new ESM signal designs are described for MIMO systems with four transmit antennas two of which are active, but we also briefly present extensions to higher numbers of antennas. Theoretical analysis and simulation results indicate that the proposed designs provide a significant SNR gain over MSM.
We consider a heterogeneous MIMO-OFDMA based dense small cell (SC) system in which each macro cell base station (MBS) serves its coverage area with the help of small cell base stations (SBSs) through multi-hop wireless connections. The SBSs act as integrated access and backhaul (IAB) nodes that handle both access and backhaul traffics with wireless links. We first develop an optimal (sum-rate maximization) resource allocation (RA) algorithm which considers subcarriers/spatial subchannels assignment and the associated power allocations. We also present two lowcomplexity suboptimal RA schemes which, as verified by simulations, incur only minor performance loss in the high SNR region. Our RA algorithms can be applied to other multi-hop networks with general UE association rule and node location distributions. We study the channel aging effect caused by the time lag between the time channel state information (CSI) is measured and that when data transmission occurs. We show the benefit of channel prediction and the limit of a centralized RA approach. The advantages of frequency (channel) reuse and the multi-hop architecture are demonstrated as well. A related but perhaps more important system design issue for an IAB cellular network is the IAB node placement problem. With the given UE association rule and UE location distribution, we present systematic approaches to find the optimal node locations. For two special propagation models, we derive closed-form expressions for the node locations that maximizes a spectral efficiency lower bound. Numerical results validate the accuracy of our estimates based on either numerical evaluations or closed-form solutions.
a b s t r a c tHydroxylated polychlorinated biphenyls (OH-PCBs) can be detected by liquid chromatography-mass spectrometry coupled to solid-phase extraction (SPE) using a dummy molecularly imprinted polymer (DMIP) as a sorbent. The DMIP is prepared by using an analogue of OH-PCBs (i.e., 4, 4-dihydroxybiphenyl) as a dummy template, to avoid the leakage of the target molecules. The DMIP-SPE sorbent shows good recoveries for OH-PCBs at pH 11 due to the charge-assisted hydrogen bondings between OH-PCBs and the DMIP. It has been found that the DMIP is much more effective and selective than the traditional C 18 -SPE method. The sample pH, polymer dosage, elution solvent and volume have been optimized for higher recoveries. Under the optimum experimental conditions, OH-PCBs can be detected in the linear concentration range of 0.05-1.0 pM, with the detection limits ranging from 11 fM to 82 fM for 4′-OH-CB 9, 4′-OH-CB 30, 4′-OH-CB 61, 4′-OH-CB 106 and 4′-OH-CB 112. The proposed system has been successfully applied to the determination of trace OH-PCBs in spiked water samples with recoveries in the range of 89-110%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.