We introduce a MEMS resonator that uses a "T"-shape beam driven by repulsive force, of which the first advantage is to avoid pull-in instability; thus, high enough voltages can be applied to the MEMS system to tune the center frequency. A T-beam model is derived from the beam-paddle hypothesis, and theoretical analysis regarding both static and dynamic behaviors, including primary resonance and secondary resonance, is conducted. This study shows an electrostatic T-beam resonator's feasibility based on repulsive force and outlines its advantages over a traditional cantilever beam resonator. Additional micro-paddle to the micro-beam means larger surface for absorption of targeted analytes and lower natural frequency, but higher resonant responses. We present a thorough analysis of primary and parametric resonances, which can enhance the system signal-to noise ratio and response time. This design enables potential applications in MEMS mass-sensors, where a large area for attachment and a high resolution are often vital.
Electrostatic MEMS transducer driven by repulsive force is an attractive possibility and has advantages of avoiding the pull-in instability, tuning the natural frequency, and achieving high sensitivity by applying high enough voltages. In this work, a "T"-shaped beam, which is formed by attaching a secondary beam perpendicular to a primary cantilever at the tip, is introduced and its nonlinear dynamics is analyzed. A reduced-order model is derived from mode shapes formed from electromechanical coupling effects respectively. Generalized forms of forced Mathieu equation of motion are derived, and then, dynamic behaviors are investigated through the theory of multiple scales. The resonant responses, including both primary and principal parametric resonances, reveal softening behavior originating from quadratic and cubic nonlinearities in the governing equation. The behavior of the T-beam is compared with traditional cantilever structure. The resonance under repulsive force demonstrates that the T-beam has several advantages over a traditional cantilever: Lower natural frequency but higher resonant responses can improve the signalto-noise ratio; with an attached micropaddle, the T-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.