TDP-43 is a highly conserved and ubiquitously expressed nuclear protein. It has been implicated in the regulation of transcription, alternative splicing, translation, and neuronal plasticity. TDP-43 has also been shown to be a disease signature protein associated with several neurodegenerative diseases including amyotrophic lateral sclerosis. However, the correlation of the physiological functions of TDP-43 with these diseases remains unknown. We have used the gene targeting approach to disrupt the expression of TDP-43 in mouse. Loss of the TDP-43 expression results in peri-implantation lethality of mice between embryonic days (E) 3.5 and 6.5. Blastocysts of the homozygous Tardbp null mutants are morphologically normal, but exhibit defective outgrowth of the inner cell mass in vitro. Our data demonstrate the essential function of TDP-43 in peri-implantation stage during the embryo development, likely because of its involvement in multiple biological processes in a variety of cell types.
Translationally controlled Tumor Protein (TCTP) is an evolutionally highly conserved protein which has been implicated in many cellular functions that are related to cell growth, death, and even the allergic response of the host. To address the physiological roles of TCTP, we generated TCTP knockout mice by targeted gene disruption. Heterozygous mutants appeared to be developmentally normal. However, homozygous mutants (TCTP ؊/؊ ) were embryonic lethal. TCTP ؊/؊ embryos were smaller in size than the control littermates at all postimplantation stages examined. Although TCTP is widely expressed in both extraembryonic and embryonic tissues, the most prominent defect of the TCTP ؊/؊ embryo at embryonic stage day 5.5 (E5.5) was in its epiblast, which had a reduced number of cells compared with wild-type controls. The knockout embryos also suffered a higher incidence of apoptosis in epiblast starting about E6.5 and subsequently died around E9.5-10.5 with a severely disorganized structure. Last, we demonstrated that TCTP ؊/؊ and control mouse embryonic fibroblasts manifested similar proliferation activities and apoptotic sensitivities to various death stimuli. Taken together, our results suggest that despite that TCTP is widely expressed in many tissues or cell types, it appears to regulate cell proliferation and survival in a tissue-or cell type-specific manner.
Adult dendritic arbors and spines can be modulated by environment and gonadal hormones that have been reported to affect also those of hippocampal and prefrontal cortical neurons. Here we investigated whether female gonadal hormones and estrous cycle alter the dendrites of primary cortical neurons. We employed intracellular dye injection in semifixed brain slices and 3-dimensional reconstruction to study the dendritic arbors and spines of the major cortical output cells, layer III and V pyramidal neurons, during different stages of the estrous cycle. Dendritic spines of both pyramidal neurons were more numerous during proestrus than estrus and diestrus, whereas dendritic arbors remained unaffected. Ovariohysterectomy (OHE) reduced dendritic spines by 24-30% in 2 weeks, whereas subcutaneous estrogen or progesterone supplement restored it to normal estrous/diestrous level in 14 days; neither treatment affected the dendritic arbors. Reduction of dendritic spines following OHE was associated with decrease of PSD-95 suggesting decrease of excitatory synapses. Thus, fluctuation of gonadal hormones during the female sex cycle is likely to modulate primary cortical functions and loss of gonadal hormones for instance following menopause might compromise cortical function, and the effect could be reversed by exogenous female sex hormones.
The formation and patterning of mesoderm during mammalian gastrulation require the activity of Nodal, a secreted mesoderm-inducing factor of the transforming growth factor-beta (TGF-beta) family. Here we show that the transcriptional corepressor DRAP1 has a very specific role in regulation of Nodal activity during mouse embryogenesis. We find that loss of Drap1 leads to severe gastrulation defects that are consistent with increased expression of Nodal and can be partially suppressed by Nodal heterozygosity. Biochemical studies indicate that DRAP1 interacts with and inhibits DNA binding by the winged-helix transcription factor FoxH1 (FAST), a critical component of a positive feedback loop for Nodal activity. We propose that DRAP1 limits the spread of a morphogenetic signal by down-modulating the response to the Nodal autoregulatory loop.
Edited by Ned Mantei Keywords:Induced pluripotent stem cell Induced neural stem/progenitor cell Cyclin D Cell cycle a b s t r a c t A short G1 phase is a characteristic feature of the cell cycle structure of pluripotent cells, and is reestablished during Yamanaka factor-mediated pluripotent reprogramming. How cell cycle control is adjusted to meet the requirements of pluripotent cell fate commitment during reprogramming is less well understood. Elevated levels of cyclin D1 were initially found to impair pluripotency maintenance. The current work further identified Cyclin D1 to be capable of transcriptionally upregulating Pax6, which promoted reprogramming cells to commit to a neural progenitor fate rather than a pluripotent cell fate. These findings explain the importance of reestablishment of G1-phase restriction in pluripotent reprogramming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.