Lattice gas model is a kind of mature and convenient pedestrian simulation model. The original lattice gas model adopts discontinuous step length and finite moving directions to simulate crowd motion, which will lead to some unreasonable movements; besides, the transition probability used in this model is often manually designed and lacks the verification of realistic pedestrian trajectories. Based on an open pedestrian trajectory dataset, we first derived the relationship between local density and the distribution of pedestrian movements’ length and then proposed an extended lattice gas model considering the statistical characteristics of pedestrian movements, which extends the concept of transition probability in the original lattice gas model to distribution of pedestrian movements’ length in two perpendicular directions. The proposed model is applied to a scenario which is the same as the experiments of the open dataset, and the numerical results demonstrate that the proposed model can reproduce the fundamental diagrams and the transition probability of the experimental dataset well. This study is helpful to understand the statistical characteristics of pedestrian movements and can improve the applicability and accuracy of the lattice gas model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.