Purpose: The aim of the paper is to evaluate the dependence of microstructure parameters,strength and plasticity of steel on crack faces friction factor.Design/methodology/approach: The specimens for the investigation were cut out fromthe 10 mm thick hot-rolled plate of 65G steel used as a model material for fatigue anddurability testing of whole-rolled railway wheels. The mechanical characteristics of the steelwere determined according to the state standard using cylindrical specimens of diameter5 mm and effective length 50 mm. The specimens were heat-treated at the mentionedconditions. Fatigue testing under mode II loading was carried out on a special rigid loadingmachine in the standard laboratory conditions at symmetric sinusoidal cycle with a frequencyof 12 Hz in the range of fatigue crack growth rates da/dN = 5∙10-8…5∙10-7 m/cycle untilits reaches relative length l/b ≥ 0.8. The obtained microsections were investigated using theoptical metallographic microscope Neophot 9 equipped with a digital camera Nikon D50 andelectronic scanning microscope Zeiss EVO 40XVP. Hardness of the specimens with differentmicrostructure was determined using durometer TK-2. The crack faces friction factor wasdetermined using original device for fractured surfaces sliding under certain compressionforce realizationFindings: The dependences of microstructure parameters, strength and plasticity of steelon crack faces friction factor are obtained.Research limitations/implications: The investigation of the influence of microstructureparameters, strength and plasticity of real wheel steels on crack faces friction factor at themode II fatigue crack growth will be carried out.Practical implications: The value of crack faces friction factor have strong impact onstress intensity at the crack tip and must be taken into account at crack growth rates curvesplotting.Originality/value: Mode II fatigue crack faces friction factor of steel is firstly experimentallydetermined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.