Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.
Novel reassortant H7N9 viruses were associated with severe and fatal respiratory disease in three patients. (Funded by the National Basic Research Program of China and others.).
BACKGROUND
Heightened surveillance of acute febrile illness in China since 2009 has led to the identification of a severe fever with thrombocytopenia syndrome (SFTS) with an unknown cause. Infection with Anaplasma phagocytophilum has been suggested as a cause, but the pathogen has not been detected in most patients on laboratory testing.
METHODS
We obtained blood samples from patients with the case definition of SFTS in six provinces in China. The blood samples were used to isolate the causal pathogen by inoculation of cell culture and for detection of viral RNA on polymerase-chain-reaction assay. The pathogen was characterized on electron microscopy and nucleic acid sequencing. We used enzyme-linked immunosorbent assay, indirect immunofluorescence assay, and neutralization testing to analyze the level of virus-specific antibody in patients’ serum samples.
RESULTS
We isolated a novel virus, designated SFTS bunyavirus, from patients who presented with fever, thrombocytopenia, leukocytopenia, and multiorgan dysfunction. RNA sequence analysis revealed that the virus was a newly identified member of the genus phlebovirus in the Bunyaviridae family. Electron-microscopical examination revealed virions with the morphologic characteristics of a bunyavirus. The presence of the virus was confirmed in 171 patients with SFTS from six provinces by detection of viral RNA, specific antibodies to the virus in blood, or both. Serologic assays showed a virus-specific immune response in all 35 pairs of serum samples collected from patients during the acute and convalescent phases of the illness.
CONCLUSIONS
A novel phlebovirus was identified in patients with a life-threatening illness associated with fever and thrombocytopenia in China. (Funded by the China Mega-Project for Infectious Diseases and others.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.