Seepage-induced erosion in porous soil has always been a major concern in the field of geofluids. Various fractal models have been built to theoretically investigate the porosity and permeability coefficient. However, the seepage erosion process (i.e., incubation, formation, evolution, and destruction) in porous soil is not clearly demonstrated to clarify the seepage fractal characteristics. In this paper, a series of hydraulic tests were performed to reveal the mass fractal characteristics of sandy gravels, coarse-grained sands, and fine-grained sands in the seepage erosion process. The results show that the mass fractal dimension was appropriate to describe the cumulative mass distribution of particles, the complexity of pore networks, and the dynamic changes of the seepage erosion process. Moreover, the scale-invariant interval, as an essential precondition for the accurate calculation of the mass fractal dimension, was to some extent affected by the average grain size and the fine content of porous soil. In particular, the changing trend of porosity and permeability coefficient with the mass fractal dimension was demonstrated in the seepage erosion process. Both porosity and permeability coefficients indicated an increasing trend as the development of seepage erosion. However, the mass fractal dimension gradually decreased due to the removal of fine particles induced by seepage flow water. Research findings will not only provide a new perspective on the seepage erosion mechanism but also predict the development of the seepage erosion process in engineering practice.
Seepage-induced failure may disable the bearing capacity of foundations in dams and embankments. However, the evolution mechanism of the seepage failure process in granular soils is not well understood. In this paper, a series of laboratory hydraulic tests were performed to investigate the seepage failure process in sandy gravels and fine-grained sands. Seepage behaviors of the hydraulic gradient, seepage flow velocity, and permeability coefficient were observed, and then, the Reynolds number was obtained to describe the seepage regime. By linking the hydraulic gradients with the Reynolds number, the seepage failure process was quantitatively divided into four phases: (i) incubation ( Re < 0.85 ), (ii) formation ( 0.85 ≤ Re ≤ 5 ), (iii) evolution ( 5 < Re ≤ 50 ), and (iv) destruction ( 50 < Re ). The findings of the study identified an approximately linear relationship between the hydraulic gradient and the seepage velocity in the phases of incubation and formation in which the viscous drag effects are not negligible, corroborating Darcy’s view. However, in the phases of evolution and destruction, the hydraulic gradient and the seepage velocity are nonlinearly related, indicating that the inertial force plays a leading role, and the quadratic equation is relevant for the regime transition from laminar flow to turbulent flow. Finally, the mechanism of each phase in the seepage failure process was clarified. Fine content and uniformity coefficient are internal factors that affect the potential of seepage failure, while the seepage force that drives the transport of fine particles is an underlying cause that promotes the development of seepage failure. This study will be quite useful in identifying the limits of applicability of the well-known “Darcy’s law,” in further improving the physical modelling associated with fluid flow through granular soils.
There are few existing studies from a spatial perspective that explore the mechanism of the living environment, relocated direction and relocated distance on the elderly’s physical and mental health. Based on the 2019 household survey questionnaire data, this study utilizes a binomial logistic regression model and residents’ in-depth interviews to study relocated behavior in Nanjing. We analyzed the spatial–temporal characteristics of relocated behaviors, the accumulation effect at different stages and the influence of relocated intention on physical and mental health among the elderly. The findings are as follows: (1) The mode of relocation among the elderly includes long-term cumulative effects and short-term effects. Frequent relocation has a cumulative negative impact on the physical and mental health of the elderly. (2) The elderly relocated in the short-term had a great negative impact on their mental health but had no significant impact on their physical health. (3) In the last relocation, active relocation had a significantly positive impact on physical health. The “centrifugal relocation” from the main urban area to the surrounding new cities has a significant positive impact on mental health. Moreover, long-distance relocations adversely affected mental health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.