Prostate cancer has high metastatic potential. Men with higher urinary levels of the sleep hormone melatonin are much less likely to develop advanced prostate cancer compared with men with lower levels of melatonin. Melatonin has shown anticancer activity in experimental investigations. Nevertheless, the therapeutic effect of melatonin in metastatic prostate cancer has largely remained a mystery. Analyses of Gene Expression Omnibus data and human tissue samples indicated that levels of matrix metallopeptidase 13 (MMP‐13) expression are higher in prostate cancer patients than in healthy cancer‐free individuals. Mechanistic investigations revealed that melatonin inhibits MMP‐13 expression and the migratory and invasive capacities of prostate cancer cells via the MT1 receptor and the phospholipase C, p38, and c‐Jun signaling cascades. Importantly, tumor growth rate and metastasis to distant organs were suppressed by melatonin in an orthotopic prostate cancer model. This is the first demonstration showing that melatonin impedes metastasis of prostate cancer by suppressing MMP‐13 expression in both in vitro and in vivo models. Thus, melatonin is promising in the management of prostate cancer metastasis and deserves to undergo clinical investigations.
Bone metastases of prostate cancer (PCa) may cause intractable pain. Wnt-induced secreted protein-1 (WISP-1) belongs to the CCN family (CTGF/CYR61/NOV) that plays a key role in bone formation. We found that osteoblast-conditioned medium (OBCM) stimulates migration and vascular cell adhesion molecule-1 (VCAM-1) expression in human PCa (PC3 and DU145) cells. Osteoblast transfection with WISP-1 shRNA reduced OBCM-mediated PCa migration and VCAM-1 expression. Stimulation of PCa with OBCM or WISP-1 elevated focal adhesion kinase (FAK) and p38 phosphorylation. Either FAK and p38 inhibitors or siRNA abolished osteoblast-derived WISP-1-induced migration and VCAM-1 expression. Osteoblast-derived WISP-1 inhibited miR-126 expression. Moreover, miR-216 mimic reversed the WISP-1-enhanced migration and VCAM-1 expression. This study suggests that osteoblast-derived WISP-1 promotes migration and VCAM-1 expression in human PCa cells by down-regulating miR-126 expression via αvβ1 integrin, FAK, and p38 signaling pathways. Thus, WISP-1 may be a new molecular therapeutic target in PCa bone metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.