Injection of photoexcited electrons from colloidal PbS quantum dots into TiO(2) nanoparticles is investigated. The electron affinity and ionization potential of PbS quantum dots, inferred from cyclic voltammetry measurements, show strong size dependence due to quantum confinement. On the basis of the measured energy levels, photoexcited electrons should transfer efficiently from the quantum dots into TiO(2) only for quantum-dot diameter below approximately 4.3 nm. Continuous-wave fluorescence spectra and fluorescence transients of PbS quantum dots coupled to titanium dioxide nanoparticles are consistent with electron transfer for small quantum dots. The measured electron transfer time is surprisingly slow ( approximately 100 ns), and implications of this for future photovoltaics will be discussed. Initial results obtained from solar cells sensitized with PbS quantum dots are presented.
The interplay between ionic and electronic charge carriers in mixed conductors offers rich physics and unique device potential. In light-emitting electrochemical cells (LEECs), for example, the redistribution of ions assists the injection of electronic carriers and leads to efficient light emission. The mechanism of operation of LEECs has been controversial, as there is no consensus regarding the distribution of electric field in these devices. Here, we probe the operation of LEECs using electric force microscopy on planar devices. We show that obtaining the appropriate boundary conditions is essential for capturing the underlying device physics. A patterning scheme that avoids overlap between the mixed-conductor layer and the metal electrodes enabled the accurate in situ measurement of the electric-field distribution. The results show that accumulation and depletion of mobile ions near the electrodes create high interfacial electric fields that enhance the injection of electronic carriers.
We report the first observation of electrogenerated chemiluminescence (ECL) from PbS quantum dots (QDs). Different ECL intensities are observed for different ligands used to passivate the QDs, which indicates that ECL is sensitive to surface chemistry, with the potential to serve as a powerful probe of surface states and charge transfer dynamics in QDs. In particular, passivation of the QD surfaces with trioctylphosphine (TOP) increases ECL intensity by 3 orders of magnitude when compared to passivation with oleic acid alone. The observed overlap of the ECL and photoluminescence spectra suggests a significant reduction of deep surface trap states from the QDs passivated with TOP.
The electrochromic property and device construction of
a triphenylamine-based
oriented two-dimensional covalent organic framework (2D COF) film
on indium tin oxide (ITO) coated glass was reported. The characterization
of the 2D COF3PA‑TT film revealed that the film
was uniform, with good crystallinity, and oriented with its 2D plane
parallel to the substrate. For the first time, the electrochromic
properties of 2D COF3PA‑TT film were studied. 2D
COF3PA‑TT film on ITO exhibited reversible color
transition between deep red and dark brown during redox process. Spectroelectrochemical
experiments revealed color changes in the absorption spectra of 2D
COF3PA‑TT film in the visible and near-infrared
regions and showed the characteristics of intervalence charge transfer.
The quasi-solid-state electrochromic device was prepared based on
the COF3PA‑TT film, and it exhibited moderate performance
and stability in the near-infrared region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.