The proteolytic activity of Furin responsible for processing full length Notch-1 (p300) plays a critical role in Notch signaling. The amplitude and duration of Notch activity can be regulated at various points in the pathway, but there has been no report regarding regulation of the Notch-1-Furin interaction, despite its importance. In the present study, we found that the Notch-1-Furin interaction is regulated by the non-receptor tyrosine kinase, c-Src. c-Src and Notch-1 are physically associated, and this association is responsible for Notch-1 processing and activation. We also found that growth factor TGF-α, an EGFR ligand, and PDGF-BB, a PDGFR ligand, induce the Notch-1-Furin interaction mediated by c-Src. Our results support three new and provocative conclusions: (1) The association between Notch-1 and Furin is a well-regulated process; (2) Extracellular growth factor signals regulate this interaction, which is mediated by c-Src; (3) There is cross-talk between the plasma growth factor receptor-c-Src and Notch pathways. Co-localization of Notch-1 and c-Src was confirmed in xenograft tumor tissues and in the tissues of pancreatic cancer patients. Our findings have implications for the mechanism by which the Notch and growth factor receptor-c-Src signaling pathways regulate carcinogenesis and cancer cell growth.
Since the KCNB1 encoding Kv2.1 channel accounts for the majority of Kv currents modulating insulin secretion by pancreatic islet beta-cells, we postulated that KCNB1 is a plausible candidate gene for genetic variation contributing to the variable compensatory secretory function of beta-cells in type-2 diabetes (T2D). We conducted two studies, a case-control study and a cross-section study, to investigate the association of common single-nucleotide polymorphisms (SNPs) in KCNB1 with T2D and its linking traits. In the case-control study, we first examined the association of 20 tag SNPs of KCNB1 with T2D in a population with 226 T2D patients and non-diabetic subjects (screening study). We then identified the association in an enlarged population of 412 T2D patients and non-diabetic subjects (replication study). In the cross-sectional study, we investigated the linkage between the candidate SNP rs1051295 and T2D by comparing beta-cell function and insulin sensitivity among rs1051295 genotypes in a general population of 1051 subjects at fasting and after glucose loading (oral glucose tolerance tests, OGTT) in 84 fasting glucose impaired subjects, and several T2D-related traits. We found that among the 19 available tag SNPs, only the KCNB1 rs1051295 was associated with T2D (P = 0.027), with the rs1051295 TT genotype associated with an increased risk of T2D compared with genotypes CC (P = 0.009). At fasting, rs1051295 genotype TT was associated with a 9.8% reduction in insulin sensitivity compared to CC (P = 0.008); along with increased plasma triglycerides (TG) levels (TT/CC: P = 0.046) and increased waist/hip (W/H) ratio (TT/CC: P = 0.013; TT/TC: P = 0.002). OGTT confirmed that genotype TT exhibited reduced insulin sensitivity by 16.3% (P = 0.030) compared with genotype TC+CC in a fasting glucose impaired population. The KCNB1 rs1051295 genotype TT in the Chinese Han population is associated with decreased insulin sensitivity and increased plasma TG and W/H ratio, which together contribute to an increased risk for T2D.
Background. Hyperglycemia is common and difficult to control in perioperative patients with type 2 diabetes mellitus (T2DM), which impacts their prognosis after operation. Our study investigated the short-term effect of continuous subcutaneous insulin infusion (CSII) and multiple daily injection (MDI) in perioperative T2DM patients using the data envelopment analysis (DEA). Methods. T2DM patients ( n = 639 ) who underwent surgeries in Guangdong Provincial Hospital of Traditional Chinese Medicine (2009.01-2017.12) were included. Insulin was provided to each patient during the study and separated into a CSII group ( n = 369 ) and an MDI group ( n = 270 ). DEA was performed to compare the therapeutic indexes and investigate the short-term effect of the CSII group and MDI group. Results. Scale efficiencies of the CSII group with CCR model and BCC model were better than that of the MDI group. Regarding slack variables, with higher surgical levels, the CSII group was closer to the ideal state than the MDI group, which indicated in improving the average fasting blood glucose (AFBG), antibiotic use days (AUD), preoperative blood glucose control time (PBGCT), first postoperative day fasting blood glucose (FPDFBG), and postoperative hospitalization days (PHD). Conclusion. CSII could effectively control blood glucose levels and shorten perioperative hospitalizing time for T2DM patients, indicating that CSII was beneficial in perioperative period and should be promoted clinically.
Background To investigate the association of variability in metabolic parameters such as total cholesterol concentrations (TC), uric acid (UA), body mass index (BMI), visceral adiposity index (VAI) and systolic blood pressure (SBP) with incident type 2 diabetes (T2D) and whether variability in these metabolic parameters has additive effects on the risk of T2D. Methods Based on the Beijing Functional Community Cohort, 4392 participants who underwent three health examinations (2015, 2016, and 2017) were followed up for incident T2D until the end of 2021. Variability in metabolic parameters from three health examinations were assessed using the coefficient of variation, standard deviation, variability independent of the mean, and average real variability. High variability was defined as the highest quartile of variability index. Participants were grouped according to the number of high-variability metabolic parameters. Cox proportional hazards models were performed to assess the hazard ratio (HR) and 95% confidence interval (CI) for incident T2D. Results During a median follow-up of 3.91 years, 249 cases of incident T2D were identified. High variability in TC, BMI, VAI and SBP was significantly associated with higher risks of incident T2D. As for UA, significant multiplicative interaction was found between variability in UA and variability in other four metabolic parameters for incident T2D. The risk of T2D significantly increased with the increasing numbers of high-variability metabolic parameters. Compared with the group with low variability for 5 parameters, the HR (95% CI) for participants with 1–2, 3, 4–5 high-variability metabolic parameters were 1.488 (1.051, 2.107), 2.036 (1.286, 3.222) and 3.017 (1.549, 5.877), respectively. Similar results were obtained in various sensitivity analyses. Conclusions High variability of TC, BMI, VAI and SBP were independent predictors of incident T2D, respectively. There was a graded association between the number of high-variability metabolic parameters and incident T2D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.