The Artificial Neural Networks (ANNs), like CNN/DNN and LSTM, are not biologically plausible. Despite their initial success, they cannot attain the cognitive capabilities enabled by the dynamic hierarchical associative memory systems of biological brains. The biologically plausible spiking brain models, e.g., cortex, basal ganglia, and amygdala, have a greater potential to achieve biological brain like cognitive capabilities. Bayesian Confidence Propagation Neural Network (BCPNN) is a biologically plausible spiking model of the cortex. A human-scale model of BCPNN in real-time requires 162 TFlop/s, 50 TBs of synaptic weight storage to be accessed with a bandwidth of 200 TBs. The spiking bandwidth is relatively modest at 250 GBs/s. A hand-optimized implementation of rodent scale BCPNN has been done on Tesla K80 GPUs require 3 kWs, we extrapolate from that a human scale network will require 3 MWs. These power numbers rule out such implementations for field deployment as cognition engines in embedded systems.
The key innovation that this paper reports is that it is feasible and affordable to implement real-time BCPNN as a custom tiled application-specific integrated circuit (ASIC) in 28 nm technology with custom 3D DRAM - eBrainII - that consumes 3 kW for human scale and 12 watts for rodent scale. Such implementations eminently fulfill the demands for field deployment.
In traditional watermarking algorithms, the insertion of watermark into the original signal inevitably introduces some perceptible quality degradation. Another problem is the inherent conflict between imperceptibility and robustness. Zero-watermarking technique can solve these problems successfully. But most existing zero-watermarking algorithm for audio and image cannot resist against some signal processing manipulations or malicious attacks. In the paper, a novel audio zero-watermarking scheme based on discrete wavelet transform (DWT) is proposed, which is more efficient and robust. The experiments show that the algorithm is robust against the common audio signal processing operations such as MP3 compression, re-quantization, re-sampling, low-pass filtering, cutting-replacement, additive white Gaussian noise and so on. These results demonstrate that the proposed watermarking method can be a suitable candidate for audio copyright protection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.