Great progress has been made in the preparation and application of multi-shelled hollow micro-/nanostructures during the past decade. However, the synthetic methodologies and potential applications of these novel and interesting materials have not been reviewed comprehensively in the literature. In the current review we first describe different synthetic methodologies for multi-shelled hollow micro-/nanostructures as well as their compositional and geometric manipulation and then review their applications in energy conversion and storage, sensors, photocatalysis, and drug delivery. The correlation between the geometric properties of multi-shelled hollow micro-/nanostructures and their specific performance in relevant applications are highlighted. These results demonstrate that the geometry has a direct impact on the properties and potential applications of such materials. Finally, the emerging challenges and future development of multi-shelled hollow micro-/nanostructures are further discussed.
Two erbium-organic frameworks Er2(BDC)3(DMF)2(H2O)2.H2O (1) and Er2(BDC-F4)3(DMF)(H2O).DMF (2) (BDC = 1,4-benzenedicarboxylate; BDC-F(4) = 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylate or tetrafluoroterephthalate; DMF = dimethylformamide) have been synthesized and structurally characterized. Studies on thermal gravimetric analysis and the spectroscopic and luminescent properties of 1, 2, and their desolvated solid Er2(BDC)3 (1a) and partially desolvated solid Er2(BDC-F4)3(DMF).DMF (2a) indicate that fluorination can significantly improve the luminescence intensity of the Er ions by reducing the fluorescence quenching effect of the vibrational C-H bond; thus, the near-IR-luminescence intensity of 2a is 3 times higher than that of 1a.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.