A model of semiconductor hot electron bolometer (SHEB), in which electromagnetic radiation heats only electrons in narrow-gap semiconductor without its lattice slow-response heating, is considered. Free carrier heating changes the generation-recombination processes that are the reason of semiconductor resistance rise. It is estimated, that Hg0.8Cd0.2Te detector noise equivalent power (NEP) for mm and sub-mm radiation wavelength range can reach NEP ∼10−11 W at Δf = 1 Hz signal gain frequency bandwidth. Measurements performed at electromagnetic wave frequencies v = 36, 39, 55, 75 GHz, and at 0.89 and 1.58 THz too, with non-optimized Hg0.8Cd0.2Te antenna-coupled bolometer prototype confirmed the basic concept of SHEB. The experimental sensitivity Sv ∼2 V/W at T = 300 K and the calculated both Johnson-Nyquist and generation-recombination noise values gave estimation of SHEB NEP ∼3.5 × 10−10 W at the band-width Δf = 1 Hz and v = 36 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.