The results of the study of oscillograms of voltage, current, pulsed electric power and energy input into the plasma of an overstressed nanosecond discharge between aluminum electrodes in argon and mixtures of nitrogen with oxygen (100-1) at pressures in the range of 13.3-103.3 kPa are presented, the emission plasma spectra are studied. It is shown that in mixtures of nitrogen with oxygen at atmospheric pressure, nanoparticles of aluminum oxide (Al2O3) are formed, the luminescence of which manifests itself in the spectral range of 200-600 nm and which is associated with the formation of F-, F + - centers and more complex aggregate formations based on oxygen vacancies. Calculations of the electron-kinetic coefficients of plasma, transport characteristics, such as mean electron energies in the range 5.116-13.41 eV, are given. The electron concentration was 1.6 ∙ 1020 m-3 - 1.1 ∙ 1020 m-3 at a current density of 5.1 ∙ 106 A / m2 and l. 02 ∙ 107 A / m2 on the surface of the electrode of the radiation source (0.196 · 10-4 m2). Also drift velocities, temperatures and concentrations of electrons, specific losses of the discharge power for elastic and inelastic processes of collisions of electrons per unit of the total concentration of the mixture from the reduced electric field strength (E / N) for a mixture of aluminum, nitrogen, oxygen, rate constants of collisions of electrons with aluminum atoms on the E / N parameter in plasma on a mixture of aluminum vapor, oxygen and nitrogen = 30: 1000: 100000 Pa at a total mixture pressure of P = 101030 Pa are given.
Приведено характеристики і параметри перенапруженого біполярного розряду наносекундної тривалості між мідними електродами в арґоні за тиску 6,7 кПа. У процесі мікровибухів неоднорідностей на робочих поверхнях мідних електродів у сильному електричному полі в проміжок між електродами вносили пари міді. Це створювало передумови для синтезу тонких наноструктурованих плівок міді, які можуть осаджуватись на діелектричній підкладці (кварц, скло, кераміка), встановленій поблизу від центра розрядного проміжку. Досліджено просторові характеристики розряду, імпульси напруги на розрядному проміжку величиною d = 2 і 7 мм, імпульси розрядного струму, імпульсну потужність розряду і енергетичний внесок у розряд за один імпульс. Методом емісійної спектроскопії з високим часовим розділенням досліджено спектри випромінювання плазми і осцилограми випромінювання найінтенсивніших спектральних ліній та смуг, що дозволило встановити основні збуджені продукти, які утворюються в плазмі. Проведено оптимізацію усередненого за часом УФвипромінювання точкового випромінювача залежно від напруги живлення високовольтного модулятора і частоти повторення розрядних імпуль-
The characteristics and parameters of an overstressed high-current discharge with a duration of 100–150 ns in air, which was ignited between an aluminum electrode and a chalcopyrite electrode (CuInSe2), are presented. The air pressure was 13.3 and 101.3 kPa. In the process of microexplosions of inhomogeneities on the working surfaces of electrodes in a strong electric field, aluminum vapors and chalcopyrite vapors were introduced into the interelectrode gap, which creates the prerequisites for the synthesis of thin films based on quaternary chalcopyrite – CuAlInSe2. The films synthesized from the products of electrode destruction were deposited on a quartz plate at a distance of 2–3 cm from the center of the discharge gap. The current and voltage pulses across the discharge gap of d = 1 mm, as well as the pulse energy input into the discharge, were investigated. The plasma emission spectra were studied, which made it possible to establish the main decay products of the chalcopyrite molecule and the energy states of atoms and singly charged ions of aluminum, copper and indium, which are formed in the discharge. The reference spectral lines of atoms and ions of aluminum, copper, and indium were established, which can be used to control the process of deposition of thin films of quaternary chalcopyrite. Thin films were synthesized from the degradation products of chalcopyrite molecules and aluminum vapors, which may have the composition of the quaternary chalcopyrite CuAlInSe2; the transmission spectra of the synthesized films in the spectral range of 200–800 nm were studied. By the method of numerical simulation of the plasma parameters of an overstressed nanosecond discharge based on aluminum and chalcopyrite vapors in air by solving the Boltzmann kinetic equation for the electron energy distribution function, the temperature and density of electrons, the specific power losses of the discharge for the main electronic processes and their rate constants depending on the value parameter E/N for plasma of vapor-gas mixtures based on air, aluminum vapor and ternary chalcopyrite were modulated.
The methodology, technique, and results of studies of the formation of films on the glass surface during the irradiation of water solutions of copper sulfate with the laser radiation are presented. We used the nanosecond radiation of an yttrium-aluminum garnet laser with the generation wavelength λ = 1 .06 μm. The studies used solutions with different concentrations of copper sulfate. The structure of the films obtained in this case is compared with the structure of the films obtained as a result of drying the solutions without exposure to a laser radiation. The resulting films have both ordered and disordered structures. The characteristic dimensions of the structural elements of the films are 0.5–2 μm. The transmission of films in the 300–1200 nm spectral region is studied. In general, the resulting films are transparent in this area. Their transmission practically does not depend on the wavelength, but is different for different concentrations of the solution of copper sulfate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.