Inkjet‐printed enzyme‐powered silk‐based micro‐rockets are able to undergo autonomous motion in a vast variety of fluidic environments including complex media such as human serum. By means of digital inkjet printing it is possible to alter the catalyst distribution simply and generate varying trajectory behavior of these micro‐rockets. Made of silk scaffolds containing enzymes these micro‐rockets are highly biocompatible and non‐biofouling.
Selective laser sintering (SLS) is a single-step, threedimensional printing (3DP) process that is gaining momentum in the manufacturing of pharmaceutical dosage forms. It also offers opportunities for manufacturing various pharmaceutical dosage forms with a wide array of drug delivery systems. This research aimed to introduce carbonyl iron as a multifunctional magnetic and heat conductive ingredient for the fabrication of oral tablets containing isoniazid, a model antitubercular drug, via SLS 3DP process. Furthermore, the effects of magnetic iron particles on the drug release from the SLS printed tablets under a specially designed magnetic field was studied. Optimization of tablet quality was performed by adjusting SLS printing parameters. The independent factors studied were laser scanning speed, hatching space, and surface/chamber temperature. The responses measured were printed tablets' weight, hardness, disintegration time, and dissolution performance. It has been observed that, for the drug formulation with carbonyl iron, due to its inherent thermal conductivity, sintering tablets required relatively lower laser energy input to form the tablets of the same quality attributes as the other batches that contained no magnetic particles. Also, printed tablets with carbonyl iron released 25% more drugs under a magnetic field than those without it. It can be claimed that magnetic nanoparticles appear as an alternative conductive material to facilitate the sintering process during SLS 3DP of dosage forms.
Recently, various innovative technologies have been developed for the enhanced delivery of biologics as attractive formulation targets including polymeric micro and nanoparticles. Combined with personalized medicine, this area can offer a great opportunity for the improvement of therapeutics efficiency and the treatment outcome. Herein, a novel manufacturing method has been introduced to produce protein-loaded chitosan particles with controlled size. This method is based on an additive manufacturing technology that allows for the designing and production of personalized particulate based therapeutic formulations with a precise control over the shape, size, and potentially the geometry. Sprayed multi adsorbed-droplet reposing technology (SMART) consists of the high-pressure extrusion of an ink with a well determined composition using a pneumatic 3D bioprinting approach and flash freezing the extrudate at the printing bed, optionally followed by freeze drying. In the present study, we attempted to manufacture trypsin-loaded chitosan particles using SMART. The ink and products were thoroughly characterized by dynamic light scattering, rheometer, Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red (FTIR) and Circular Dichroism (CD) spectroscopy. These characterizations confirmed the shape morphology as well as the protein integrity over the process. Further, the effect of various factors on the production were investigated. Our results showed that the concentration of the carrier, chitosan, and the lyoprotectant concentration as well as the extrusion pressure have a significant effect on the particle size. According to CD spectra, SMART ensured Trypsin’s secondary structure remained intact regardless of the ink composition and pressure. However, our study revealed that the presence of 5% (w/v) lyoprotectant is essential to maintain the trypsin’s proteolytic activity. This study demonstrates, for the first time, the viability of SMART as a single-step efficient process to produce biologics-based stable formulations with a precise control over the particulate morphology which can further be expanded across numerous therapeutic modalities including vaccines and cell/gene therapies.
Bone regeneration using inorganic nanoparticles is a robust and safe approach. In this paper, copper nanoparticles (Cu NPs) loaded with calcium phosphate scaffolds were studied for their bone regeneration potential in vitro. The pneumatic extrusion method of 3D printing was employed to prepare calcium phosphate cement (CPC) and copper loaded CPC scaffolds with varying wt% of copper nanoparticles. A new aliphatic compound Kollisolv MCT 70 was used to ensure the uniform mixing of copper nanoparticles with CPC matrix. The printed scaffolds were studied for physico-chemical characterization for surface morphology, pore size, wettability, XRD, and FTIR. The copper ion release was studied in phosphate buffer saline at pH 7.4. The in vitro cell culture studies for the scaffolds were performed using human mesenchymal stem cells (hMSCs). The cell proliferation study in CPC-Cu scaffolds showed significant cell growth compared to CPC. The CPC-Cu scaffolds showed improved alkaline phosphatase activity and angiogenic potential compared to CPC. The CPC-Cu scaffolds showed significant concentration dependent antibacterial activity in Staphylococcus aureus. Overall, the CPC scaffolds loaded with 1 wt% Cu NPs showed improved activity compared to other CPC-Cu and CPC scaffolds. The results showed that copper has improved the osteogenic, angiogenic and antibacterial properties of CPC scaffolds, facilitating better bone regeneration in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.