Supercritical accretion onto compact objects powers a massive wind that is optically thick and Eddingtonlimited. If most of the hard X-rays from the central disk are obscured by the wind, the source will display a blackbody-like spectrum with a luminosity scaled with the mass of the compact object. From the Chandra archive of nearby galaxies, we selected a sample of luminous and very soft sources and excluded contaminations from foreground objects and supernova remnants. They are found to be preferentially associated with late-type galaxies. The majority of sources in our sample are either too hot or too luminous to be explained by nuclear burning on the surface of white dwarfs, and are argued to be powered by accretion. The most likely explanation is that they are due to emission from the photosphere of a wind driven by supercritical accretion onto compact objects. Their blackbody luminosity ranges from ∼10 37 to nearly 10 40 erg s −1 , indicative of the presence of both neutron stars and stellar-mass black holes. The blackbody luminosity also shows a possible bimodal distribution, albeit at low significance, peaked around the Eddington limit for neutron stars and stellar-mass black holes, respectively. If this can be confirmed, it will be smoking gun evidence that supercritical accretion powers thick winds. Based on a wind model, the inferred mass accretion rate of these objects is around a few hundred times the Eddington rate, suggesting that they may be intermediate between the canonical ultraluminous X-ray sources and SS 433 in terms of the accretion rate.
We have measured the resistance R(T, I, Bext) of a superconducting transition edge sensor over the entire transition region on a fine scale, producing a 4-dimensional map of the resistance surface. The dimensionless temperature and current sensitivities (α≡∂logR/∂logT|Iandβ≡∂logR/∂logI|T) of the TES resistance have been determined at each point. α and β are closely related to the sensor performance, but show a great deal of complex, large amplitude fine structure over large portions of the surface that is sensitive to the applied magnetic field. We discuss the relation of this structure to the presence of Josephson “weak link” fringes.
With the improving energy resolution of transitionedge sensor (TES) based microcalorimeters, performance verification and calibration of these detectors has become increasingly challenging, especially in the energy range below 1 keV where fluorescent atomic X-ray lines have linewidths that are wider than the detector energy resolution and require impractically high statistics to determine the gain and deconvolve the instrumental profile. Better behaved calibration sources such as grating monochromators are too cumbersome for space missions and are difficult to use in the lab. As an alternative, we are exploring the use of pulses of 3 eV optical photons delivered by an optical fiber to generate combs of known energies with known arrival times. Here, we discuss initial results of this technique obtained with 2 eV and 0.7 eV resolution X-ray microcalorimeters. With the 2 eV detector, we have achieved photon number resolution for pulses with mean photon number up to 133 (corresponding to 0.4 keV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.