We review observations of ultraluminous X-ray sources (ULXs). X-ray spectroscopic and timing studies of ULXs suggest a new accretion state distinct from those seen in Galactic stellar-mass black hole binaries. The detection of coherent pulsations indicates the presence of neutron-star accretors in three ULXs and therefore apparently super-Eddington luminosities. Optical and X-ray line profiles of ULXs and the properties of associated radio and optical nebulae suggest that ULXs produce powerful outflows, also indicative of super-Eddington accretion. We discuss models of super-Eddington accretion and their relation to the observed behaviors of ULXs. We review the evidence for intermediate mass black holes in ULXs. We consider the implications of ULXs for super-Eddington accretion in active galactic nuclei, heating of the early universe, and the origin of the black hole binary recently detected via gravitational waves.Comment: 38 pages, to appear in Annual Reviews of Astronomy and Astrophysic
Ultraluminous X-ray sources (ULXs) are accreting black holes that may contain the missing population of intermediate mass black holes or reflect super-Eddington accretion physics. Ten years of Chandra and XMM-Newton observations of ULXs, integrated by multiband studies of their counterparts, have produced a wealth of observational data and phenomenological classifications. We review the properties of their host galaxies, list popular spectral models and implications for standard and supercritical accretion physics, demonstrate how X-ray timing of these objects places constraints on their masses. We also review multiwavelength studies of ULXs, including the optical emission of the binary system and nebulosity around them. We summarize that three classes of black holes could power ULXs: normal stellar mass black holes (∼ 10 M ⊙ ), massive stellar black holes ( 100 M ⊙ ), and intermediate mass black holes (10 2 -10 4 M ⊙ ). We collect evidence for the presence of these three types of compact objects, including caveat of each interpretation, and briefly review their formation processes.
Using archival Hubble Space Telescope (HST) imaging data, we report the multiband photometric properties of 13 ultraluminous X-ray sources (ULXs) that have a unique compact optical counterpart. Both magnitude and color variation are detected at timescales of days to years. The optical color, variability, and X-ray to optical flux ratio indicate that the optical emission of most ULXs is dominated by X-ray reprocessing on the disk, similar to that of low-mass X-ray binaries. For most sources, the optical spectrum is a power law, F ν ∝ ν α with α in the range 1.0-2.0 and the optically emitting region has a size on the order of 10 12 cm. Exceptions are NGC 2403 X-1 and M83 IXO 82, which show optical spectra consistent with direct emission from a standard thin disk, M101 ULX-1 and M81 ULS1, which have X-ray to optical flux ratios more similar to high-mass X-ray binaries, and IC 342 X-1, in which the optical light may be dominated by the companion star. Inconsistent extinction between the optical counterpart of NGC 5204 X-1 and the nearby optical nebulae suggests that they may be unrelated.
We present new radio, optical, and X-ray observations of three Ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array (ATCA) and Very Large Telescope (VLT) spectroscopic observations of NGC5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC342 X-1, Holmberg II X-1 and NGC5408 X-1. The energetics of the optical nebula of IC342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is 6 × 10 52 erg. The minimum energy needed to supply the associated radio nebula is 9.2 × 10 50 erg. In addition, we detected an unresolved radio source at the location of IC342 X-1 at VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milli-arcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC342 X-1 using the "fundamental plane" of accreting black holes and obtain M BH ≤ (1.0 ± 0.3) × 10 3 M ⊙ . Arguing that the nebula of IC342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC342 X-1 and compare with sources like S26, SS433, IC10 X-1.
In this paper we present the enhanced X-ray Timing and Polarimetry mission. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources. The paper provides a detailed description of: 1) The technological and technical aspects, and the expected performance of the instruments of the scientific payload; 2) The elements and functions of the mission, from the spacecraft to the ground segment.X-ray instrumentation, X-ray Polarimetry, X-ray Timing, Space mission: eXTP PACS number(s): 95.55. Ka, 95.85.Nv, 95.75.Hi, 97.60.Jd, 97.60.Lf
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.