X-ray radiation is widely used in medical and industrial applications. The basic design of the x-ray tube has not changed significantly in the last century. In this paper, we demonstrate that medical diagnostic x-ray radiation can be generated using a carbon nanotube (CNT) based field-emission cathode. The device can readily produce both continuous and pulsed x-ray with a programmable waveform and repetition rate. A total emission current of 28 mA was obtained from a 0.2 cm 2 area CNT cathode. The x-ray intensity is sufficient to image human extremity at 14 kVp and 180 mAs. Pulsed x-ray with a repetition rate greater than 100 kHz was readily achieved by programming the gate voltage. The CNT-based cold-cathode x-ray technology can potentially lead to portable and miniature x-ray sources for industrial and medical applications.
We report a field emission x-ray source that can generate a scanning x-ray beam to image an object from multiple projection angles without mechanical motion. The key component of the device is a gated carbon nanotube field emission cathode with an array of electron emitting pixels that are individually addressable via a metal-oxide-semiconductor field effect transistor-based electronic circuit. The characteristics of this x-ray source are measured and its imaging capability is demonstrated. The device can potentially lead to a fast data acquisition rate for laminography and tomosynthesis with a simplified experimental setup.
Ultra-high temperature ceramics (UHTCs) are generally referred to the carbides, nitrides, and borides of the transition metals, with the Group IVB compounds (Zr & Hf) and TaC as the main focus. The UHTCs are endowed with ultra-high melting points, excellent mechanical properties, and ablation resistance at elevated temperatures. These unique combinations of properties make them promising materials for extremely environmental structural applications in rocket and hypersonic vehicles, particularly nozzles, leading edges, and engine components, etc. In addition to bulk UHTCs, UHTC coatings and fiber reinforced UHTC composites are extensively developed and applied to avoid the intrinsic brittleness and poor thermal shock resistance of bulk ceramics. Recently, highentropy UHTCs are developed rapidly and attract a lot of attention as an emerging direction for ultra-high temperature materials. This review presents the state of the art of processing approaches, microstructure design and properties of UHTCs from bulk materials to composites and coatings, as well as the future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.