With the accumulation of big data of CME observations by coronagraphs, automatic detection and tracking of CMEs has proven to be crucial. The excellent performance of convolutional neural network in image classification, object detection and other computer vision tasks motivates us to apply it to CME detection and tracking as well. We have developed a new tool for CME Automatic detection and tracking with MachinE Learning (CAMEL) techniques. The system is a three-module pipeline. It is first a supervised image classification problem. We solve it by training a neural network LeNet with training labels obtained from an existing CME catalog. Those images containing CME structures are flagged as CME images. Next, to identify the CME region in each CME-flagged image, we use deep descriptor transforming to localize the common object in an image set. A following step is to apply the graph cut technique to finely tune the detected CME region. To track the CME in an image sequence, the binary images with detected CME pixels are converted from cartesian to polar coordinate. A CME event is labeled if it can move in at least two frames and reach the edge of coronagraph field of view. For each event, a few fundamental parameters are derived. The results of four representative CMEs with various characteristics are presented and compared with those from four existing automatic and manual catalogs. We find that CAMEL can detect more complete and weaker structures, and has better performance to catch a CME as early as possible.
A B S T R A C TWe propose a novel fully convolutional network architecture for shapes, denoted by Shape Fully Convolutional Networks (SFCN). 3D shapes are represented as graph structures in the SFCN architecture, based on novel graph convolution and pooling operations, which are similar to convolution and pooling operations used on images. Meanwhile, to build our SFCN architecture in the original image segmentation fully convolutional network (FCN) architecture, we also design and implement a generating operation with bridging function. This ensures that the convolution and pooling operation we have designed can be successfully applied in the original FCN architecture. In this paper, we also present a new shape segmentation approach based on SFCN. Furthermore, we allow more general and challenging input, such as mixed datasets of different categories of shapes which can prove the ability of our generalisation. In our approach, SFCNs are trained triangles-to-triangles by using three low-level geometric features as input. Finally, the feature voting-based multi-label graph cuts is adopted to optimise the segmentation results obtained by SFCN prediction. The experiment results show that our method can effectively learn and predict mixed shape datasets of either similar or different characteristics, and achieve excellent segmentation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.