We present MINOS, a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environments. The simulator leverages large datasets of complex 3D environments and supports flexible configuration of multimodal sensor suites. We use MINOS to benchmark deep-learning-based navigation methods, to analyze the influence of environmental complexity on navigation performance, and to carry out a controlled study of multimodality in sensorimotor learning. The experiments show that current deep reinforcement learning approaches fail in large realistic environments. The experiments also indicate that multimodality is beneficial in learning to navigate cluttered scenes. MINOS is released open-source to the research community at http://minosworld.org.
We introduce Habitat 2.0 (H2.0), a simulation platform for training virtual robots in interactive 3D environments and complex physics-enabled scenarios. We make comprehensive contributions to all levels of the embodied AI stack -data, simulation, and benchmark tasks. Specifically, we present: (i) ReplicaCAD: an artist-authored, annotated, reconfigurable 3D dataset of apartments (matching real spaces) with articulated objects (e.g. cabinets and drawers that can open/close); (ii) H2.0: a high-performance physics-enabled 3D simulator with speeds exceeding 25,000 simulation steps per second (850× real-time) on an 8-GPU node, representing 100× speed-ups over prior work; and, (iii) Home Assistant Benchmark (HAB): a suite of common tasks for assistive robots (tidy the house, prepare groceries, set the table) that test a range of mobile manipulation capabilities. These large-scale engineering contributions allow us to systematically compare deep reinforcement learning (RL) at scale and classical sense-plan-act (SPA) pipelines in long-horizon structured tasks, with an emphasis on generalization to new objects, receptacles, and layouts. We find that (1) flat RL policies struggle on HAB compared to hierarchical ones; (2) a hierarchy with independent skills suffers from 'hand-off problems', and (3) SPA pipelines are more brittle than RL policies. Figure 1: A mobile manipulator (Fetch robot) simulated in Habitat 2.0 performing rearrangement tasks in a ReplicaCAD apartment -(left) opening a drawer before picking up an item from it, and (right) placing an object into the bowl after navigating to the table. Best viewed in motion at https://sites.google.com/view/habitat2. Preprint. Under review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.