Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.
Abstract:We have demonstrated a metropolitan all-pass quantum communication network in field fiber for four nodes. Any two nodes of them can be connected in the network to perform quantum key distribution (QKD). An optical switching module is presented that enables arbitrary 2-connectivity among output ports. Integrated QKD terminals are worked out, which can operate either as a transmitter, a receiver, or even both at the same time. Furthermore, an additional link in another city of 60 km fiber (up to 130 km) is seamless integrated into this network based on a trusted relay architecture. On all the links, we have implemented protocol of decoy state scheme. All of necessary electrical hardware, synchronization, feedback control, network software, execution of QKD protocols are made by tailored designing, which allow a completely automatical and stable running. Our system has been put into operation in Hefei in August 2009, and publicly demonstrated during an evaluation conference on quantum network organized by the Chinese Academy of Sciences on August 29, 2009. Real-time voice telephone with one-time pad encoding between any two of the five nodes (four all-pass nodes plus one additional node through relay) is successfully established in the network within 60km. 793-795 (1997). 3. T. Nishioka, H. Ishizuka, T. Hasegawa, and J. Abe, "'Circular type' quantum key distribution," Photon. Technol.Lett., IEEE 14, 576-578 (2002). 4. F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using Gaussian-modulated coherent states," Nature 421, 238-241 (2003). 5. C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004 1155-1163 (1995). 14. P. D. Townsend, "Quantum cryptography on multi-user optical fibre networks," Nature 385, 47-49 (1997).
In light of the growing complexity of globally dispersed, multi-tier supply chains; sustainable supply chain management (SSCM) has become instrumental in the quest for achieving sustainability compliance along the supply chain. This study investigates how sustainability capability develops within a firm, and then extends to SSCM. Using a fixed-effect model and a global dataset of 2,206 firms between 2002 and 2015, this study shows that a firm's information environment, proxied by their customers awareness, has a significantly positive effect on their sustainability performance, and on their implementation of SSCM. Our analysis suggests that the influence of a firm's information environment on a firm's SSCM performance is mediated by the firm's own sustainability capability. We also find that this relationship is affected by stakeholder engagement. This research is relevant because, by investigating the factors that influence the development of SSCM, it provides guidance for firms that wish to achieve sustainability improvements in their supply chains during an era when the natural environment, social responsibility and the related strategic opportunities have increased in importance.
An integrated CMOS ultrawideband wireless telemetry transceiver for wearable and implantable medical sensor applications is reported in this letter. This high duty cycled, noncoherent transceiver supports scalable data rate up to 10 Mb/s with energy efficiency of 0.35 nJ/bit and 6.2 nJ/bit for transmitter and receiver, respectively. A prototype wireless capsule endoscopy using the proposed transceiver demonstrated in vivo image transmission of 640 × 480 resolution at a frame rate of 2.5 frames/s with 10 Mb/s data rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.