Sensing technologies based on terahertz (THz) waves have significant application prospects in fast imaging, free label, and non-invasive inspection methods. However, the main drawback limiting the performance of THz-based bio-chemical...
Orbital angular momentum (OAM) detection underpins almost all aspects of vortex beams’ advances such as communication and quantum analogy. Conventional schemes are frustrated by low speed, complicated system, limited detection range. Here, we devise an intelligent processor composed of photonic and electronic neurons for OAM spectrum measurement in a fast, accurate and direct manner. Specifically, optical layers extract invisible topological charge information from incoming light and a shallow electronic layer predicts the exact spectrum. The integration of optical-computing promises us a compact single-shot system with high speed and energy efficiency (optical operations / electronic operations ~$${10}^{3}$$ 10 3 ), neither necessitating reference wave nor repetitive steps. Importantly, our processor is endowed with salient generalization ability and robustness against diverse structured light and adverse effects (mean squared error ~$$10^{(-5)}$$ 10 ( - 5 ) ). We further raise a universal model interpretation paradigm to reveal the underlying physical mechanisms in the hybrid processor, as distinct from conventional ‘black-box’ networks. Such interpretation algorithm can improve the detection efficiency up to 25-fold. We also complete the theory of optoelectronic network enabling its efficient training. This work not only contributes to the explorations on OAM physics and applications, and also broadly inspires the advanced links between intelligent computing and physical effects.
Epitaxy technology produces high-quality material building blocks that underpin various fields of applications. However, fundamental limitations exist for conventional epitaxy, such as the lattice matching constraints that have greatly narrowed down the choices of available epitaxial material combinations. Recent emerging epitaxy techniques such as remote and van der Waals epitaxy have shown exciting perspectives to overcome these limitations and provide freestanding nanomembranes for massive novel applications. Here, we review the mechanism and fundamentals for van der Waals and remote epitaxy to produce freestanding nanomembranes. Key benefits that are exclusive to these two growth strategies are comprehensively summarized. A number of original applications have also been discussed, highlighting the advantages of these freestanding films-based designs. Finally, we discuss the current limitations with possible solutions and potential future directions towards nanomembranes-based advanced heterogeneous integration. Graphical Abstract
Fractal algorithms for signal analysis are developed from geometric fractals and can be used to describe various complex signals in nature. A roughness scaling extraction algorithm with first-order flattening (RSE-f1) was shown in our previous studies to have a high accuracy, strong noise resistance, and a unique capacity to recognize the complexity of non-fractals that are common in signals. In this study, its disadvantage of a long calculation duration was addressed by using a dichotomy-binary strategy. The accelerated RSE-f1 algorithm (A-RSE-f1) retains the three above-mentioned advantages of the original algorithm according to theoretical analysis and artificial signal testing, while its calculation speed is significantly accelerated by 13 fold, which also makes it faster than the typical Higuchi algorithm. Afterwards, the vibration signals of the milling process are analyzed using the A-RSE-f1 algorithm, demonstrating the ability to distinguish different machining statuses (idle, stable, and chatter) effectively. The results of this study demonstrate that the RSE algorithm has been improved to meet the requirements of practical engineering with both a fast speed and a high performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.