Background: The low pathogenic H9N2 AIV caused the serious impact on the poultry industry and public safety. Our purpose was to investigate the molecular evolutionary characteristics of the new isolated H9N2 virus and investigate the intracellular target protein of H9N2 AIV replication in sensitive cells. Methods: AIV A/chicken/Shandong/LY1/2017 (H9N2) was isolated from the cloaca of the healthy chicken in Shandong, and the full-length eight gene segments of this isolated H9N2 AIV were amplified by RT-PCR and analyzed. MDCK cells were used as the target cell model, and VOPBA assay and LC-MS/MS were carried out to identify the virus-binding protein of H9N2 AIV. MDCK cells were pre-treated with the special antibody and siRNA, and treated with H9N2 AIV to detect the virus replication. Additionally, Vimentin-pcDNA3.0 was successfully constructed, and transinfected into MDCK cells, and then H9N2 AIV mRNA was detected with RT-PCR. Results: Phylogenetic analysis revealed that HA, NA, PB2, PB1, PA, NP and M seven genes of the isolated H9N2 AIV were derived from A/Chicken/Shanghai/F/98, while NS gene was derived from A/Duck/Hong Kong/Y439/97. The cleavage site sequence of HA gene of the isolated H9N2 AIV was a PARSSR G pattern, and the left side sequence (224~229) of receptor binding site was NGQQGR pattern, which were similar to that of A/Chicken/Shanghai/F/98. Following VOPBA assay, we found one protein of about 50KDa binding to H9N2 AIV, and the results of LC-MS/MS analysis proved that vimentin was the vital protein binding to H9N2 AIV. The pre-incubation of the specific antibody and siRNA decreased the viral RNA level in MDCK cells treated with H9N2 AIV. Furthermore, we found that over-expressed vimentin increased H9N2 AIV replication in MDCK cells.
The bursa of Fabricius is an acknowledged central humoral immune organ unique to birds, which is vital to B cell differentiation and antibody production. However, the function and mechanism of the biological active peptide isolated from bursa on B cell development and autophagy were less reported. In this study, we isolated a new oligopeptide with nine amino acids Leu-Met-Thr-Phe-Arg-Asn-Glu-Gly-Thr from avian bursa following RP-HPLC, MODIL-TOP-MS, and MS/MS, which was named after BP9. The results of immunization experiments showed that mice injected with 0.01 and 0.05 mg/mL BP9 plus JEV vaccine generated the significant increased antibody levels, compared to those injected with JEV vaccine only. The microarray analysis on the molecular basis of BP9-treated immature B cell showed that vast genes were involved in various immune-related biological processes in BP9-treated WEHI-231 cells, among which the regulation of cytokine production and T cell activation were both major immune-related processes in WEHI-231 cells with BP9 treatment following network analysis. Also, the differentially regulated genes were found to be involved in four significantly enriched pathways in BP9-treated WEHI-231 cells. Finally, we proved that BP9 induced the autophagy formation, regulated the gene and protein expressions related to autophagy in immature B cell, and stimulated AMPK-ULK1 phosphorylation expression. These results suggested that BP9 might be a strong bursal-derived active peptide on antibody response, B cell differentiation, and autophagy in immature B cells, which provided the linking among humoral immunity, B cell differentiation, and autophagy and offered the important reference for the effective immunotherapeutic strategies and immune improvement.
Our results indicated BHP induced significant humoral and cellular immunity to JEV vaccine, and regulated various biological processes and signalling related to immune activation in immature B cells. These results proposed the immunomodulatory function and mechanism of BHP on immune induction, which provided the novel insight on the candidate reagent for immune improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.