Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. Using microarray analysis in Arabidopsis, we show that pollen tubes that have grown through stigma and style tissues of a pistil have a distinct gene expression profile and express a substantially larger fraction of the Arabidopsis genome than pollen grains or pollen tubes grown in vitro. Genes involved in signal transduction, transcription, and pollen tube growth are overrepresented in the subset of the Arabidopsis genome that is enriched in pistil-interacted pollen tubes, suggesting the possibility of a regulatory network that orchestrates gene expression as pollen tubes migrate through the pistil. Reverse genetic analysis of genes induced during pollen tube growth identified seven that had not previously been implicated in pollen tube growth. Two genes are required for pollen tube navigation through the pistil, and five genes are required for optimal pollen tube elongation in vitro. Our studies form the foundation for functional genomic analysis of the interactions between the pollen tube and the pistil, which is an excellent system for elucidation of novel modes of cell–cell interaction.
Most of current gene expression signatures for cancer prognosis are based on risk scores, usually calculated as some summaries of expression levels of the signature genes, whose applications require presetting risk score thresholds and data normalization. In this study, we demonstrate the critical limitations of such type of signatures that the risk scores of samples will change greatly when they are normalized together with different samples, which would induce spurious risk classification and difficulty in clinical settings, and the risk scores of independent samples are incomparable if data normalization is not adopted. To overcome these limitations, we propose a rank-based method to extract a prognostic gene pair signature for overall survival of stage I non-small-cell lung cancer. The prognostic gene pair signature is verified in three integrated data sets detected by different laboratories with different microarray platforms. We conclude that, different from the type of signatures based on risk scores summarized from gene expression levels, the rank-based signatures could be robustly applied at the individualized level to independent clinical samples assessed in different laboratories.
This study confirmed the feasibility of TEVAR for uncomplicated type B aortic dissection in the acute setting with fewer aortic-related adverse events and a lower mortality rate compared with BMT.
SUMMARYIn plants, double fertilization requires successful sperm cell delivery into the female gametophyte followed by migration, recognition and fusion of the two sperm cells with two female gametes. We isolated a null allele (lre-5) of LORELEI, which encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein implicated in reception of the pollen tube by the female gametophyte. Although most lre-5 female gametophytes do not allow pollen tube reception, in those that do, early seed development is delayed. A fraction of lre-5/lre-5 seeds underwent abortion due to defect(s) in the female gametophyte. The aborted seeds contained endosperm but no zygote/embryo, reminiscent of autonomous endosperm development in the pollen tube reception mutants scylla and sirene. However, unpollinated lre-5/lre-5 ovules did not initiate autonomous endosperm development and endosperm development in aborted seeds began after central cell fertilization. Thus, the egg cell probably remained unfertilized in aborted lre-5/lre-5 seeds. The lre-5/lre-5 ovules that remain undeveloped due to defective pollen tube reception did not induce synergid degeneration and repulsion of supernumerary pollen tubes. In ovules, LORELEI is expressed during pollen tube reception, double fertilization and early seed development. Null mutants of LORELEI-like-GPI-anchored protein 1 (LLG1), the closest relative of LORELEI among three Arabidopsis LLG genes, are fully fertile and did not enhance reproductive defects in lre-5/lre-5 pistils, suggesting that LLG1 function is not redundant with that of LORELEI in the female gametophyte. Our results show that, besides pollen tube reception, LORELEI also functions during double fertilization and early seed development.
Pollen tubes extend rapidly in an oscillatory manner by the extreme form of polarized growth, tip growth, and provide an exciting system for studying the spatiotemporal control of polarized cell growth. The Rho-family ROP GTPase is a key signaling molecule in this growth control and is periodically activated at the apical plasma membrane to spatially define the apical growth region and temporally precede the burst of growth. The spatiotemporal dynamics of ROP GTPase is interconnected with actin dynamics and polar exocytosis that is required for tip-targeted membrane and wall expansion. Recent advances in the study of the mechanistic interlinks between ROP-centered signaling and spatiotemporal dynamics of cell membrane and wall remodeling will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.