Protein phosphorylation, especially serine/threonine and tyrosine phosphorylation, plays significant roles in signalling during plant growth and development as well as plant responses to biotic or abiotic stresses. Dual-specificity protein tyrosine phosphatases dephosphorylate components of these signalling pathways. Here, we report that an atypical dual-specificity protein tyrosine phosphatase, AtPFA-DSP3 (DSP3), negatively affects the response of plants to high-salt conditions. A DSP3 loss-offunction mutant showed reduced sensitivity to salt treatment. DSP3 was primarily localized in nuclei and was degraded during salt treatment. Compared to wild type, the level of ROS was lower in the dsp3 mutant and higher in plants ectopically expressing DSP3, indicating that higher DSP3 level was associated with increased ROS production. DSP3 interacted with and dephosphorylated MPK3 and MPK6.Genetic analyses of a dsp3mpk3 double mutant revealed that DSP3's effect on salt stress depends on MPK3. Moreover, the phosphatase activity of DSP3 was required for its role in salt signalling. These results indicate that DSP3 is a negative regulator of salt responses in Arabidopsis by directly modulating the accumulation of phosphorylated MPK3 and MPK6.
Superspreaders are critical infectious resources in multiple infectious diseases. They can be asymptomatic or present mild symptoms but can transmit pathogens to susceptible populations, leading to severe symptoms, and even death. Early identification of this population is extremely important to inhibit the spread of infectious diseases. Right now, the whole global world is suffering from a devastating infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this article, a superspreader cluster event in coronavirus disease 2019 (COVID-19) was identified by tracking contacting histories of infected patients. This cluster was found to be originated from an asymptomatic SARS-CoV-2 carrier, which resulted in 13 secondary cases getting infected. All the secondary patients presented with non-typical symptoms of COVID-19, such as fever, dry cough, and myalgia, one of which died of respiratory failure at the end. From this cluster, we learn that people with older ages, low immunity, multiple underlying diseases, especially pulmonary diseases, can contribute to a poor prognosis. Thus, asymptomatic superspreaders of COVID-19 can be extremely dangerous and must be handled time-efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.