Korean native cattle is one of the famous native breeds in Korean. In the present work, we report the complete mitochondrial genome sequence of Korean native cattle for the first time. The total length of the mitogenome was 16,339 bp with the base composition of 33.4% for A, 27.2% for T, 26.0% for C, and 13.4% for G, and an A-T (60.6%)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of cattle. The complete mitochondrial genome sequence of Korean native cattle would serve as an important data set of the germplasm resources for further study.
Jinnan cattle, one of the five major breeds of Chinese yellow cattle, are the traditional draft and beef breed in southern Shanxi province, China. Our study aimed to search genes that will allow the selection of important economic traits through selection signature detection, which can help in discovering the action mechanism of positive selection in the variety breeding process of Jinnan cattle.
To better understand the ensiling characteristics of sorghum stalk, the dynamic changes of fermentation parameters, nutrient components and bacterial community of sorghum stalk silage were analyzed by intermittently sampling on day 0, 1, 3, 7, 14, 28, and 56 of ensiling duration. The results showed that high-moisture sorghum stalk was well preserved during ensiling fermentation, with the DM loss of 4.10% and the little difference between the nutrients of sorghum stalk before and after ensiling. The pH value of silage declined to its lowest value of 4.32 by Day 7 of ensiling, and other fermentation parameters kept steady since Day 28 of ensiling. The amplicon sequencing analysis revealed that the alpha diversity parameters of silage bacterial community including Shannon index, observed features, Pielou evenness and Faith PD gradually declined (P < 0.01) with ensiling duration. Principal coordinate analysis (PCoA) revealed that bacterial profiles of raw material would experience a succession becoming a quite different community during ensiling fermentation. Taxonomic classification revealed a total of 10 and 173 bacterial taxa at the phylum and genus level, respectively, as being detected with relative abundances higher than 0.01% and in at least half samples. LEfSe analysis revealed that 26 bacterial taxa were affected by sampling timepoint (P < 0.05 and LDA score > 4). When focusing on the dynamic trend of silage bacterial taxa, lactic acid bacteria successfully dominated in the bacterial community on Day 1 of ensiling, and the bacterial community almost came to a plateau by Day 28 of ensiling, with Lactobacillus and Leuconostoc as the dominant genera. In a word, the succession of fermentation parameters, nutrient components and bacterial community indicate a successful dominance establishment of LAB and a fast advent of fermentation plateau, suggesting that high-moisture sorghum stalk can be ensiled directly, but the pH of mature silage is a little high.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.