The intensification of Typhoon Lekima (2019) is simulated with the Weather Research and Forecasting model to study the atmospheric horizontal kinetic energy (HKE) spectra and corresponding spectral HKE budgets under the control of real tropical cyclone (TC). The results show that the TC has the ability to modify the canonical atmospheric energy spectrum during its evolution, which is dominated by its rotational mode. With the intensification of Lekima, the HKE spectrum in the troposphere swells over the central mesoscale and develops an arc-like shape. The stronger the TC, the more pronounced the arc-like shape is and the smaller scale it extends to. The roles various physical processes play at different heights and horizontal scales during the intensification of Lekima are investigated and the dependence of the effect of physical processes on scale and height is revealed. Meanwhile, the potential relationship between the intensification of TC, the activation of energy activity at smaller scales, and the downscale extension of the arc-like spectral shape is found.
COSMIC-2 (Constellation Observing System for Meteorology, Ionosphere and Climate- 2) dry temperature profile data from December 2019 to November 2021 are used to study stratospheric gravity waves (GWs) in the Asian monsoon region. The stratosphere between 20 and 50 km is divided into the lower, middle, and high layers based on the vertical distribution of the mean potential energy (Ep) and the horizontal distribution of GW Ep in these three layers, and their seasonal changes are analyzed. The source and propagating mechanism of GWs in middle latitudes in winter are revealed. The results show that GWs in the stratosphere have distinct distribution features during different seasons. The significant Ep in winter appears mainly in middle latitudes north of 30°N, whereas in summer, it appears in the low latitudes south of 30°N. There are significant areas of GW activity in both low and middle latitudes in spring and autumn, but their intensity is significantly weaker than in winter and summer. Areas with significant GWs and the seasonal variation of their intensity are accompanied by the Asian monsoon activity. In winter, there is a northward and upward propagating column for GWs above the Sichuan Basin, and in summer, there is an eastward and upward propagating column for GWs in the zonal band 15–25°N. The occurrence of GWs in northwestern China in winter is the result of the subtropical jet stream and topography. Once GWs enter the stratosphere, they are regulated by the winter stratospheric environment, and the GWs acquire a northerly component by the wind shear. The meridional wind shear in the background field is an important factor affecting the development and propagation of GWs.
A high-resolution simulation with the Weather Research and Forecasting (WRF) model is performed to investigate the characteristics of the horizontal kinetic energy (HKE) spectra of an eastward-moving southwest vortex (SWV) generated in Sichuan Province, China, during 16–19 June 2011. The results indicate that the evolution of the SWV can be divided into the development, mature, and decay stages. In the troposphere, the HKE spectrum reproduces the typical atmospheric spectrum, with a slope of approximately −3 for wavelengths greater than 300 km and −5/3 for wavelengths between 300 and 30 km in each stage. The average scale of spectral transition is around 300 km. However, the HKE spectrum in the lower stratosphere shows a −5/3 slope at mesoscales and has no clear spectral transition. During the mature stage of the SWV, the HKE increases prominently for wavelengths between 300 and 30 km. Moreover, the relative contribution of the rotational kinetic energy (RKE) and the divergent kinetic energy (DKE) was investigated. It shows that the RKE spectrum dominates the DKE spectrum for wavelengths greater than 300 km in the lower troposphere, while in the upper troposphere the magnitudes of RKE and DKE are comparable over all scales. However, in the lower stratosphere, the DKE is an order of magnitude larger than the RKE, contributing more to the total HKE spectrum.
We used the Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) dry temperature profile data from December 2019 to November 2021 to study the vertical wavenumber spectra of the potential energy of stratospheric gravity waves (GWs Ep) in the Asian monsoon region (15–45°N, 70–150°E). The GW Ep decreases with increasing vertical wavenumber, and the spectral slope varies with wavenumber. The spectral slope becomes smaller over a wavenumber range of 0.1–0.45 km−1, and larger from 0.45–1 km−1, with increasing wavenumber. The energy density distribution at middle and low latitudes shows seasonal variations. Over a wavenumber range of 0.05–0.5 km−1, the energy density in winter is higher at middle latitudes than at low latitudes, and the opposite is observed in summer over a wavenumber range from 0.1 to 1 km−1. Both the spectral amplitude and characteristic wavelength exhibit band-like patterns, and the large-value bands and their centers vary significantly with the season. In winter, the middle latitude spectral amplitude is larger than that at low latitudes, and the significant large-value band-like distribution is at 40°N. In summer, the distribution is opposite, with large-value band regions over the Bay of Bengal and Indo-China Peninsula. The large-value region of the middle latitude spectral amplitude corresponds to a longer characteristic wavelength, while the large-value region of the low latitude spectral amplitude corresponds to a shorter characteristic wavelength. There is also significant seasonal variation in the distribution of spectral slopes. Over a wavenumber range of 0.1 to 0.5 km−1, the slope is smaller at middle latitudes and larger at low latitudes in winter; the opposite is observed in summer. There is a significant annual cycle of spectral amplitude at middle and low latitudes, and a 4.8 month cycle at middle latitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.