To explore the protective mechanism of l-arginine against T-2 toxin-induced oxidative damage in mouse Leydig cells, Leydig cells were isolated and cultured with control, T-2 toxin (10 nM), l-arginine (0.25, 0.5, and 1.0 mM), and T-2 toxin (10 nM T-2 toxin) with l-arginine (0.25, 0.5, or 1.0 mM) for 24 hours. Cells and supernatants were harvested to examine cell viability, activities, and messenger RNA (mRNA) expression of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT), malondialdehyde (MDA) content, and DNA damage. Results showed that T-2 toxin significantly reduced cell viability, improved MDA content and DNA damage, and decreased activities and mRNA expression of GSH-Px, SOD, and CAT. However, l-arginine reduced T-2 toxin-induced oxidative damage and tended to maintain normal levels. Furthermore, l-arginine upregulated mRNA expressions of GSH-Px, SOD, and CAT. Collectively, l-arginine, due to its antioxidative ability, could ameliorate T-2 toxin-induced cytotoxicities in mouse Leydig cells by regulating oxidative stress.