Ion internal transport barriers (iITBs) are first observed in neutral beam injection (NBI) heated plasmas at the HL-2A tokamak. The position of the barrier foot, in the stationary state, coincides with the q = 1 surface within its uncertainty of measurement. iITBs can develop more easily at the beginning of NBI heating. Also, iITBs are unstable for the sawtooth plasma. Simulations reveal that the thermal diffusivity of ions (χ i) inside the barrier can be as low as the neoclassical level. It is observed that the flow shear in the stationary iITB state reaches the level required for suppressing the ion temperature gradient mode instability, which indicates the important role of flow shear in sustaining the iITB.
This paper assesses the 3D effects of edge magnetic field structure on divertor/SOL transport, based on inter-machine comparison of experimental data and on the recent progress of 3D edge transport simulation. The 3D effects are elucidated as a consequence of competition between transports parallel (//) and perpendicular () to magnetic field, in open field lines cut by divertor plates, or in magnetic islands. The competition has strong impacts on divertor functions, such as determination of the divertor density regime, impurity screening and detachment control. The effects of magnetic perturbation on the edge electric field and turbulent transport are also discussed. Parameterization to measure the 3D effects on the edge transport is attempted for the individual divertor functions. Based on the suggested key parameters, an operation domain of the 3D divertor configuration is discussed for future devices.
Edge impurity transport is studied in electron cyclotron resonance heating (ECRH) L-mode plasmas of the HL-2A tokamak based on space-resolved vacuum ultraviolet spectroscopy with which radial profiles of impurity line emissions are measured from the core region inside the last closed flux surface (LCFS) and the edge region in the scrape-off layer, simultaneously. The radial profile of carbon emissions of C V (2271 Å: 1s2s 3 S-1s2p 3 P) reconstructed into the local emissivity profile is analysed with a one-dimensional impurity transport code, and the diffusion coefficient and convective velocity of impurity ions are determined in the core region of the HL-2A tokamak. The impurity source is also determined with the measured absolute emissivity profiles of C IV (1548 Å: 1s 2 2s 2 S-1s 2 2p 2 P) located at the LCFS. The ratio of C V to C IV can therefore be used as an index to characterize the core impurity transport between the LCFS and the radial region of the C V emission at a normalized radius of about ρ = 0.6. The ratio measured from ohmic discharges shows a gradual decrease with electron density. However, the ratio suddenly decreases by a factor of three when the ECRH focused in the plasma centre is switched on, suggesting a strong enhancement of the impurity transport. The analysis with the transport code indicates a change in the convective term. The convective velocity of C 4+ ions changes from inward to outward direction during the ECRH phase, while an inward velocity usually exists in the ohmic phase. Possible mechanisms for the reversal of the convective velocity are discussed.
A 1 m normal incidence vacuum ultraviolet (VUV) spectrometer has been developed for spatial distribution measurement of edge impurity line emission in the wavelength range of 300-3200 A on HL-2A tokamak. A vertical profile of the impurity line emission is measured with a space-resolved slit placed between an entrance slit and a grating of the spectrometer. Two concave 1200 grooves/mm gratings blazed at 800 and 1500 A are set on a rotatable holder in the spectrometer, which gives wavelength dispersion of 0.12 mm/A. A back-illuminated charge-coupled device is used as a detector with an image size of 6.7 x 26.6 mm(2) (26 x 26 microm(2)/pixel). An excellent spatial resolution of 2 mm is obtained with good spectral resolution of 0.15 A when the space-resolved slit of 50 microm in width is used. The space-resolved spectra thus provide three radial profiles of emission line intensity, ion temperature, and poloidal rotation. The electron temperature can be measured by the intensity ratio, e.g., CIII 2s(2)-2s3p (386 A)/2s(2)-2s2p (977 A). The sensitivity of the spectrometer is calibrated in situ by using the VUV bremsstrahlung continuum radiation emitted from the tokamak plasma. A good performance of the spectrometer system for the edge impurity and temperature profile measurements is presented with results on Ohmic and H-mode discharges.
In recent experiments at the HL-2A tokamak, dynamic features across the low-intermediatehigh (L-I-H) confinement transition have been investigated in detail. Experimental evidence shows two types of opposite limit cycles (dubbed type-Y and type-J) between the radial electric field (E r ) and turbulence evolution during the intermediate I-phase. Whereas for type-Y the turbulence grows prior to the change in E r , for type-J the oscillation in E r leads turbulence. It has been found that the type-Y usually appears first after an L-I transition, followed by type-J before the transition to the H-mode phase. Possible roles played by zonal flows and the enhanced pressure-gradient-induced flow shear in suppressing turbulence, respectively, in the type-Y and type-J periods have been identified. In addition, during the I-phase of the L-I-H discharges a kink-type MHD mode routinely occurs and crashes rapidly just prior to the I → H transition. The mode crash evokes substantial energy release from the core to plasma boundary and further increases the edge pressure gradient and E r shear, which eventually results in confinement improvement into the H-mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.