Abstract. Edge impurity transport has been investigated in the stochastic layer of Large Helical Device (LHD) and the scrape-off layer (SOL) of Huan Liuqi-2A (HL-2A) tokamak, as a comparative analysis based on the three-dimensional (3D) edge transport code EMC3-EIRENE and on the carbon emission profile measurement. The 3D simulation predicts impurity screening effect in the both devices, but also predicts different impurity behavior against collisionality and impurity source location between the two devices. The difference is caused by geometrical structures of the magnetic field lines in the stochastic layer and X-point poloidal divertor SOL, i.e., number of poloidal turns of flux tubes affecting poloidal distribution of plasma parameters and impact of perpendicular transport on parallel pressure conservation and energy transport. These processes have an influence on the impurity screening efficiency at upstream and downstream positions of field lines. The carbon emission measured in the stochastic layer of LHD clearly indicates the screening effect in high density region. The result can be qualitatively interpreted by the present modeling, although the modeling shows a slight difference in the quantitative behavior of carbon ions in the stochastic layer of LHD. On the other hand, comparison of the carbon emission profile from HL-2A with the modeling is not straightforward. It is found that the impurity distribution in the HL-2A SOL is very sensitive to the impurity source location. In order to interpret the experimental observation a further study is necessary, in particular, on the impurity source distribution in the divertor plate and the first wall.
The frequency modulated continuous wave reflectometer was developed for the first time on the HL-2A tokamak. The system utilizes a voltage controlled oscillator and an active multiplier for broadband coverage and detects as heterodyne mode. Three reflectometers have been installed and operated in extraordinary mode polarization on HL-2A to measure density profiles at low field side, covering the Q-band (33-50 GHz), V-band (50-75 GHz), and W-band (75-110 GHz). For density profile reconstruction from the phase shift of the probing wave, a corrected phase unwrapping method is introduced in this article. The effectiveness of the method is demonstrated. The density profile behavior of a fast plasma event is presented and it demonstrates the capability of the reflectometer. These diagnostics will be contributed to the routine density profile measurements and the plasma physics study on HL-2A.
Edge impurity transport is studied in electron cyclotron resonance heating (ECRH) L-mode plasmas of the HL-2A tokamak based on space-resolved vacuum ultraviolet spectroscopy with which radial profiles of impurity line emissions are measured from the core region inside the last closed flux surface (LCFS) and the edge region in the scrape-off layer, simultaneously. The radial profile of carbon emissions of C V (2271 Å: 1s2s 3 S-1s2p 3 P) reconstructed into the local emissivity profile is analysed with a one-dimensional impurity transport code, and the diffusion coefficient and convective velocity of impurity ions are determined in the core region of the HL-2A tokamak. The impurity source is also determined with the measured absolute emissivity profiles of C IV (1548 Å: 1s 2 2s 2 S-1s 2 2p 2 P) located at the LCFS. The ratio of C V to C IV can therefore be used as an index to characterize the core impurity transport between the LCFS and the radial region of the C V emission at a normalized radius of about ρ = 0.6. The ratio measured from ohmic discharges shows a gradual decrease with electron density. However, the ratio suddenly decreases by a factor of three when the ECRH focused in the plasma centre is switched on, suggesting a strong enhancement of the impurity transport. The analysis with the transport code indicates a change in the convective term. The convective velocity of C 4+ ions changes from inward to outward direction during the ECRH phase, while an inward velocity usually exists in the ohmic phase. Possible mechanisms for the reversal of the convective velocity are discussed.
A 2D electron cyclotron emission imaging (ECEI) system has been developed for measurement of electron temperature fluctuations in the HL-2A tokamak. It is comprised of a front-end 24 channel heterodyne imaging array with a tunable RF range spanning 75-110 GHz, and a set of back-end ECEI electronics that together generate 24 × 8 = 192 channel images of the 2nd harmonic X-mode electron cyclotron emission from the HL-2A plasma. The simulated performance of the local oscillator (LO) optics and radio frequency (RF) optics is presented, together with the laboratory characterization results. The Gaussian beams from the LO optics are observed to properly cover the entire detector array. The ECE signals from the plasma are mixed with the LO signal in the array box, then delivered to the electronics system by low-loss microwave cables, and finally to the digitizers. The ECEI system can achieve temporal resolutions of ~μs, and spatial resolutions of 1 cm (radially) and 2 cm (poloidally).
In recent experiments at the HL-2A tokamak, dynamic features across the low-intermediatehigh (L-I-H) confinement transition have been investigated in detail. Experimental evidence shows two types of opposite limit cycles (dubbed type-Y and type-J) between the radial electric field (E r ) and turbulence evolution during the intermediate I-phase. Whereas for type-Y the turbulence grows prior to the change in E r , for type-J the oscillation in E r leads turbulence. It has been found that the type-Y usually appears first after an L-I transition, followed by type-J before the transition to the H-mode phase. Possible roles played by zonal flows and the enhanced pressure-gradient-induced flow shear in suppressing turbulence, respectively, in the type-Y and type-J periods have been identified. In addition, during the I-phase of the L-I-H discharges a kink-type MHD mode routinely occurs and crashes rapidly just prior to the I → H transition. The mode crash evokes substantial energy release from the core to plasma boundary and further increases the edge pressure gradient and E r shear, which eventually results in confinement improvement into the H-mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.