Camptotheca acuminata is considered a natural medicinal plant with antitumor activity. The assessment of climate change impact on its suitable habitats is important for cultivation and conservation. In this study, we applied a novel approach to build ecological niche models with both climate and soil variables while the confounding effects between the variables in the two categories were avoided. We found that the degree-days below zero and mean annual precipitation were the most important climatic factors, while the basic soil saturation, soil gravel volume percentage, and clay content were the main soil factors, determining the suitable habitats of C. acuminata. We found that suitable habitats of this species would moderately increase in future climates under both the RCP4.5 and RCP8.5 climate change scenarios for the 2020s, 2050s, and 2080s. However, substantial shifts among levels of habitat suitability were projected. The dual high-suitable habitats would expand, which would be favorable for commercial plantations. Our findings contribute to a better understanding of the impact of climate change on this species and provide a scientific basis for the cultivation and conservation purposes.
DNA methylation plays a vital role in diverse biological processes. DNA methyltransferases (DNMTs) genes and RNA-directed DNA methylation (RdDM)-related genes are key genes responsible for establishing and maintaining genome DNA methylation in plants. In the present study, we systematically identified nine GbDNMTs in Ginkgo biloba, including the three common families of GbMET1a/1b, GbCMT2, and GbDRMa/b/2a/2b/2c, and a fourth family—GbDNMT3—which is absent in most angiosperms. We also identified twenty RdDM-related genes, including four GbDCLs, six GbAGOs, and ten GbRDRs. Expression analysis of the genes showed the different patterns of individual genes, and 15 of 29 genes displayed expression change under five types of abiotic stress. Gene coexpression analysis and weighted gene co-expression network analysis (WGCNA) using 126 public transcriptomic datasets revealed that these genes were clustered into two groups. In group I, genes covered members from all six families which were preferentially expressed in the ovulate strobile and fruit. A gene ontology (GO) enrichment analysis of WGCNA modules indicated that group I genes were most correlated with the biological process of cell proliferation. Group II only consisted of RdDM-related genes, including GbDRMs, GbAGOs, and GbRDRs, but no GbDCLs, and these genes were specifically expressed in the cambium, suggesting that they may function in a dicer-like (DCL)-independent RdDM pathway in specific tissues. The gene module related to group II was most enriched in signal transduction, cell communication, and the response to the stimulus. These results demonstrate that gene family members could be conserved or diverged across species, and multi-member families in the same pathway may cluster into different modules to function differentially. The study provides insight into the DNA methylation genes and their possible functions in G. biloba, laying a foundation for the further study of DNA methylation in gymnosperms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.