Purpose
This study aims to review the existing methods for additive manufacturing (AM) process selection and evaluate their suitability for design for additive manufacturing (DfAM). AM has experienced a rapid development in recent years. New technologies, machines and service bureaus are being brought into the market at an exciting rate. While user’s choices are in abundance, finding the right choice can be a non-trivial task.
Design/methodology/approach
AM process selection methods are reviewed based on decision theory. The authors also examine how the user’s preferences and AM process performances are considered and approximated into mathematical models. The pros and cons and the limitations of these methods are discussed, and a new approach has been proposed to support the iterating process of DfAM.
Findings
All current studies follow a sequential decision process and focus on an “a priori” articulation of preferences approach. This kind of method has limitations for the user in the early design stage to implement the DfAM process. An “a posteriori” articulation of preferences approach is proposed to support DfAM and an iterative design process.
Originality/value
This paper reviews AM process selection methods in a new perspective. The users need to be aware of the underlying assumptions in these methods. The limitations of these methods for DfAM are discussed, and a new approach for AM process selection is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.