The enormous building energy consumption in Shanghai necessitates the identification of standard buildings to offer guidance for the adequate design of retrofitting strategies in order to promote a sustainable built and architectural environment. In this regard, this study develops a methodological approach to establish prototypical buildings using performance index system (PIS) founded on an on-site survey. Emphasis is focused on low-rise office buildings in Shanghai. A total of 10 office parks containing 136 single low-rise office buildings in Min Hang District were systemically selected for survey and data collection. The proposed PIS includes building orientation, number of floors, window/wall ratio, heat and cold source type, plan form, and construction year. Using cluster and correlation analysis, the surveyed buildings are classified based on the impact of each PIS on the annual building energy use intensity. Based on this approach, the most influencing indexes are construction year, the number of floors, window-wall ratio and building orientation. This result refines the surveyed building samples to four prototypical buildings as representative standards for low-rise office buildings. Subsequently, typical buildings representing each of the prototypical buildings were defined. The stipulated approach provides a systematic framework for building classification, characteristic-based evaluation of building energy performance and identification of key performance index for building retrofit purposes.
Purpose From the 2000s onward, construction practices of urban residential buildings in China have shown a material transformation from clay brick to aerated concrete block. Moreover, the consumption of insulating materials for buildings has been increasing due to the new requirements in building energy-saving standards. This transformation and the increased consumption of insulating materials might have a vital impact on a building’s thermal comfort and its associated energy flows. Therefore, the purpose of this paper is to investigate the indoor thermal performance of urban residential buildings built with different materials and further discuss the correlations between indoor thermal comfort and the associated energy input. Design/methodology/approach This study investigated four residential buildings selected from four residential communities located in the cold climate zone of China. The Integrated Environment Solutions program was used to evaluate the thermal comfort levels and to quantify the operational energy consumption of the case study buildings. Additionally, the University of Bath’s Inventory of Carbon and Energy database was used to estimate the embodied energy consumption and CO2 emissions. Findings The study found that materials transition and increasing consumption did not necessarily improve indoor thermal comfort. However, the materials transition has significantly decreased the embodied energy consumption of urban residential buildings. Furthermore, the increased utilization of insulating materials has also decreased the heating and cooling energy consumption. Therefore, overall, the environmental impacts of urban residential buildings have been reduced significantly. Practical implications In the future, residential buildings completed in the 1990s will need regular maintenance, such as adding insulation. Residential buildings completed based on the latest energy-saving requirements should optimize their ventilation design, for example, by increasing the ventilation rate and by reducing solar heat gains in the summer. Originality/value This paper investigates the effects of the materials change on thermal comfort levels and the environmental impacts of urban residential buildings in the cold climate zone of China, as these have not been the focus of many previous studies.
Building retrofit measures provide a significant means of mitigating the effect of climate change on buildings by enhancing building energy performance at a beneficial cost-effectiveness. An insight into the applicable building retrofit measures within a climate zone will guide the optimisation framework to attaining sustainability in architecture and the built environment. This article presents a brief overview of recent studies on retrofit measures and its application on a variety of buildings in hot-summer–cold-winter climates, with emphasis on Shanghai. Findings show that the major retrofit measures include improvement in the building envelope, heating, ventilation and cooling (HVAC) and lighting, supported by photovoltaic (PV) systems, accordingly. Furthermore, the study identifies key elements and plausible challenges for the evaluation of building retrofit measures in this region. In this regard, financial barriers and lack of standards and regulatory support are the main challenges identified. These insights provide a systematic approach to guide building researchers, practitioners and decision-makers in the design and development of existing and new retrofit measures for the future of rapidly growing cities with a broad climate variation scope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.