Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is a common, widespread, and highly devastating disease that affects rice yield. Breeding resistant cultivars is considered the most effective measure for controlling this disease. The introgression line G252 derived from Yuanjiang common wild rice (Oryza rufipogon) was highly resistant to all tested Xoo strains, including C5, C9, PXO99, PB, T7147Y8, Hzhj19, YM1, YM187, YJdp-2, and YJws-2. To identify the BB resistance gene(s) of G252, we developed an F2 population from the cross between G252 and 02428. A linkage analysis was carried out between the phenotype and genotype in the population. A segregation ratio of 3:1 was observed between the resistant and susceptible individuals in F2 progeny, indicating a dominant resistance gene, Xa47(t), in G252. The resistance gene was mapped within an approximately 26.24 kb physical region on chromosome 11 between two InDel markers, R13I14 and 13rbq-71; and moreover, one InDel marker, Hxjy-1, co-segregated with Xa47(t). Three genes were predicted within the target region, including a promising candidate gene encoding a nucleotide-binding domain and leucine-rich repeat (NLR) protein (LOC_Os11g46200) by combining the structure and expression analysis. Physical mapping data suggested that Xa47(t) was a new broad-spectrum BB resistance gene.
Bacterial blight (BB) induced by Xanthomonas oryzae pv. oryzae (Xoo) is a devastating bacterial disease in rice. The use of disease resistance (R) genes is the most efficient method to control BB. Members of the nucleotide-binding domain and leucine-rich repeat containing protein (NLR) family have significant roles in plant defense. In this study, Xa47, a new bacterial blight R gene encoding a typical NLR, was isolated from G252 rice material, and XA47 was localized in the nucleus and cytoplasm. Among 180 rice materials tested, Xa47 was discovered in certain BB-resistant materials. Compared with the wild-type G252, the knockout mutants of Xa47 was more susceptible to Xoo. By contrast, overexpression of Xa47 in the susceptible rice material JG30 increased BB resistance. The findings indicate that Xa47 positively regulates the Xoo stress response. Consequently, Xa47 may have application potential in the genetic improvement of plant disease resistance. The molecular mechanism of Xa47 regulation merits additional examination.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is among the oldest known bacterial diseases found for rice in Asia. It is the most serious bacterial disease in many rice growing regions of the world. A total of 47 resistance (R) genes (Xa1 to Xa47) have been identified. Nonetheless, these R genes could possibly be defeated to lose their qualitative nature and express intermediate phenotypes. The identification of sources of novel genetic loci regulating host plant resistance is crucial to develop an efficient control strategy. Wild ancestors of cultivated rice are a natural genetic resource contain a large number of excellent genes. Medicinal wild rice (Oryza officinalis) belongs to the CC genome and is a well-known wild rice in south China. In this study, O. officinalis was crossed with cultivated rice HY-8 and their hybrids were screened for BB resistance genes deployed through natural selection in wild rice germplasm. The molecular markers linked to R genes for BB were used to screen the genomic regions in wild parents and their recombinants. The gene coding and promoter regions of major R genes were inconsistently found in O. officinalis and its progenies. Oryza officinalis showed resistance to all thirty inoculated Xoo strains with non-availability of various known R genes. The results indicated the presence of novel genomic regions for BB resistance in O. officinalis. The present study not only provides a reference to investigate medicinal rice for R gene(s) identification against BB but also identified it as a new breeding material for BB resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.