Day-neutral multiflora chrysanthemums can flower throughout the year without being influenced by daylength and have great application value in gardens. Studying heterosis and the genetic basis of important traits in day-neutral chrysanthemums can accelerate the breeding of new cultivars. In this research, a genetic population was constructed by crossing 135 F1 hybrid progeny from the day-neutral chrysanthemum ‘82-81-19’ (female parent) and the late-flowering chrysanthemum ‘388Q-76’ (male parent). Six traits, including abnormal (crown) bud, plant height, plant crown width, budding date, full flowering date, and number of petal layers, were selected for inheritance and heterosis analyses, and a single-generation major gene plus polygene mixed inheritance model was used to perform mixed inheritance analysis on these traits. The results indicated that the six traits were widely segregated in the F1 population, with the coefficient of variation (CV) ranging from 30% to 84%. The phenomena of heterosis and extra-parent segregation existed generally in F1 progeny, and the ratio of heterosis value of mid-parents (RHm) for the six traits was 45.5%, 2%, 2%, 6%, 6%, and −0.3%, respectively. The mixed genetic analysis showed that the abnormal (crown) bud and budding date were fitted to the B-3 model and controlled by two pairs of additive major genes. The plant height and plant crown width were fitted to the A-0 model, and no major gene was detected. The full flowering date was fitted to the A-1 model and was controlled by one pair of major genes. The number of petal layers was fitted to the B-1 model and controlled by two pairs of additive–dominant major genes. The heritabilities of major genes for abnormal bud, budding date, full flowering date, and the number of petal layers were 1.0, 0.9871, 0.7240, and 0.5612, respectively, indicating that these traits were less affected by environmental factors. Using a percentile scoring method, eight day-neutral chrysanthemum genotypes were selected from the hybrid progeny.
The traditional Chinese large-flowered chrysanthemum is one of the cultivar groups of chrysanthemum (Chrysanthemum × morifolium Ramat.) with great morphological variation based on many cultivars. Some experts have established several large-flowered chrysanthemum classification systems by using the method of comparative morphology. However, for many cultivars, accurate recognition and classification are still a problem. Combined with the comparative morphological traits of selected samples, we proposed a multi-information model based on deep learning to recognize and classify large-flowered chrysanthemum. In this study, we collected the images of 213 large-flowered chrysanthemum cultivars in two consecutive years, 2018 and 2019. Based on the 2018 dataset, we constructed a multi-information classification model using non-pre-trained ResNet18 as the backbone network. The model achieves 70.62% top-5 test accuracy for the 2019 dataset. We explored the ability of image features to represent the characteristics of large-flowered chrysanthemum. The affinity propagation (AP) clustering shows that the features are sufficient to discriminate flower colors. The principal component analysis (PCA) shows the petal type has a better interpretation than the flower type. The training sample processing, model training scheme, and learning rate adjustment method affected the convergence and generalization of the model. The non-pre-trained model overcomes the problem of focusing on texture by ignoring colors with the ImageNet pre-trained model. These results lay a foundation for the automated recognition and classification of large-flowered chrysanthemum cultivars based on image classification.
The formation mechanism of different ray floret shapes of chrysanthemum (Chrysanthemum × morifolium) remains elusive due to its complex genetic background. C. vestitum, with the basic ray floret shapes of the flat, spoon, and tubular types, is considered a model material for studying ray floret morphogenesis. In this study, the flat and tubular type lines of C. vestitum at specific stages were used to investigate the key genes that regulate morphological differences in ray florets. We found that the expression levels of genes related to auxin synthesis, transport, and response were generally higher in the tubular type than in the flat type. CvARF3 was highly expressed in the flat type, while CvARF5 and CvARF6 were highly expressed in the tubular type. Additionally, the transcription levels of Class B and E genes closely related to petal development, including CvPI, CvAP3, Cvdefh21, CvSEP3, and CvCDM77, were expressed at higher levels in the tubular type than the flat type. Based on the results, it is proposed that auxin plays a key role in the development of ray florets, and auxin-related genes, especially CvARFs, may be key genes to control the morphological difference of ray florets. Simultaneously, MADS-box genes are involved in the co-regulation of ray floret morphogenesis. The results provide novel insights into the molecular mechanism of different petal type formation and lay a theoretical foundation for the directional breeding of petal type in chrysanthemums.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.