Convolution-based recurrent neural networks and convolutional neural networks have been used extensively in spatiotemporal prediction. However, these methods tend to concentrate on fixed-scale spatiotemporal state transitions and disregard the complexity of spatiotemporal motion. Through statistical analysis, we found that the distribution of the spatiotemporal sequence and the variety of spatiotemporal motion state transitions exhibit some regularity. In light of these statistics and observations, we propose the Multi-scale Spatiotemporal Neural Network (MSSTNet), an end-to-end neural network based on 3D convolution. It can be separated into three major child modules: a distribution feature extraction module, a multi-scale motion state capture module, and a feature decoding module. Furthermore, the MSST unit is designed to model multi-scale spatial and temporal information in the multi-scale motion state capture module. We first conduct the experiments on the MovingMNIST dataset, which is the most commonly used dataset in the field of spatiotemporal prediction, MSSTNet can achieve state-of-the-art results for this dataset, and ablation experiments demonstrate that the MSST unit has positive significance for spatiotemporal prediction. In addition, this paper applies the model to valuable precipitation nowcasting, due to efficiently capturing the multi-scale information of distribution and motion, the new MSSTNet model can predict the real-world radar echo more accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.