Two new and efficient cationic yellow-emissive Ir (III) complexes (Ir1 and Ir2) are rationally designed by using 2-(4-chloro-3-(trifluoromethyl)phenyl)-4-methylquinoline as the main ligand, and, respectively, 4,4′-dimethyl-2,2′-bipyridyl and 4,4′-dimethoxy-2,2′-bipyridyl as the ancillary ligands. Both complexes show enhanced phosphorescence (546 nm with 572 nm as shoulder and high phosphorescent quantum efficiency in solution, which is in favor of efficient solution-processed phosphorescent organic light-emitting diodes. Compared with Ir2, the Ir1-based device displays excellent device performance, with maximum external quantum efficiency, current efficiency, and power efficiency of up to 7.92%, 26.32 cd/A and 15.31 lm/W, respectively, thus proving that the two new ionic Ir (III) complexes exhibit great potential for future solution-processed electroluminescence.
Non-contact optical temperature sensors are highly sought after by researchers due to their satisfactory temperature resolution (δ(T) < 0.1℃), high relative thermal sensitivity (S_r>1%/℃), fast temporal response (t<0.1s), and...
Determination of oxyanions is of paramount importance because of the essential role they play in metabolic processes involved in various aquatic environmental problems. In this investigation, a novel chemical sensor array has been developed by using gold nanoparticles modified with different chain lengths of aminothiols (AET-AuNPs) as sensing elements. The proposed sensor array provides a fingerprint-like response pattern originating from cross-reactive binding events and capable of targeting various anions, including the herbicide glyphosate. In addition, chemometric techniques, linear discrimination analysis (LDA) and the support vector machine (SVM) algorithm were employed for analyte classification and regression/prediction. The obtained sensor array demonstrates a remarkable ability to determine multiple oxyanions in both qualitative and quantitative analysis. The described methodology could be used as a simple, sensitive and fast routine analysis for oxyanions in both laboratory and field settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.