This paper proposes a method using multidomain features and support vector machine (SVM) for classifying normal and abnormal heart sound recordings. The database was provided by the PhysioNet/CinC Challenge 2016. A total of 515 features are extracted from nine feature domains, i.e., time interval, frequency spectrum of states, state amplitude, energy, frequency spectrum of records, cepstrum, cyclostationarity, high-order statistics, and entropy. Correlation analysis is conducted to quantify the feature discrimination abilities, and the results show that “frequency spectrum of state”, “energy”, and “entropy” are top domains to contribute effective features. A SVM with radial basis kernel function was trained for signal quality estimation and classification. The SVM classifier is independently trained and tested by many groups of top features. It shows the average of sensitivity, specificity, and overall score are high up to 0.88, 0.87, and 0.88, respectively, when top 400 features are used. This score is competitive to the best previous scores. The classifier has very good performance with even small number of top features for training and it has stable output regardless of randomly selected features for training. These simulations demonstrate that the proposed features and SVM classifier are jointly powerful for classifying heart sound recordings.
This study introduced entropy measures to analyze the heart sound signals of people with and without pulmonary hypertension (PH). The lead II Electrocardiography (ECG) signal and heart sound signal were simultaneously collected from 104 subjects aged between 22 and 89. Fifty of them were PH patients and 54 were healthy. Eleven heart sound features were extracted and three entropy measures, namely sample entropy (SampEn), fuzzy entropy (FuzzyEn) and fuzzy measure entropy (FuzzyMEn) of the feature sequences were calculated. The Mann-Whitney U test was used to study the feature significance between the patient and health group. To reduce the age confounding factor, nine entropy measures were selected based on correlation analysis. Further, the probability density function (pdf) of a single selected entropy measure of both groups was constructed by kernel density estimation, as well as the joint pdf of any two and multiple selected entropy measures. Therefore, a patient or a healthy subject can be classified using his/her entropy measure probability based on Bayes' decision rule. The results showed that the best identification performance by a single selected measure had sensitivity of 0.720 and specificity of 0.648. The identification performance was improved to 0.680, 0.796 by the joint pdf of two measures and 0.740, 0.870 by the joint pdf of multiple measures. This study showed that entropy measures could be a powerful tool for early screening of PH patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.