N6-methyladenosine (m6A) is an abundant nucleotide modification in mRNA that is required for the differentiation of mouse embryonic stem cells. However, it remains unknown whether m6A controls differentiation of normal and/or malignant myeloid hematopoietic cells. Here we show that shRNA-mediated depletion of the m6A-forming enzyme METTL3 in human hematopoietic stem/progenitor cells promotes differentiation coupled with reduced proliferation. Conversely, overexpression of wild-type METTL3, but not the catalytic-dead form of METTL3, inhibits differentiation and increases cell growth. METTL3 mRNA and protein is expressed more abundantly in acute myeloid leukemia (AML) cells compared to healthy hematopoietic stem/progenitor cells and other types of tumors. Furthermore, METTL3 depletion in humanmyeloid leukemia cell lines induces differentiation and apoptosis and delays leukemia in recipient mice in vivo. Single-nucleotide resolution mapping of m6A coupled with ribosome profiling reveals that m6A promotes the translation of c-MYC, BCL2 and PTEN mRNAs in human myeloid leukemia MOLM13 cells. Moreover, loss of METTL3 leads to increased levels of pAKT, which contributes to the differentiation effects of METTL3 depletion. Overall these results provide a rationale for therapeutic targeting of METTL3 in myeloid leukemia.
Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO 2 by NO 2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH 3 neutralization or under cloud conditions. Under polluted environments, this SO 2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH 3 and NO 2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.sulfate aerosol | severe haze | pollution | human health | climate
Bcl-2-associated transcription factor 1 (BCLAF1) is known to be involved in multiple biological processes. Although several splice variants of BCLAF1 have been identified, little is known about how BCLAF1 splicing is regulated or the contribution of alternative splicing to its developmental functions. Here we find that inclusion of alternative exon5a was significantly increased in colorectal cancer (CRC) samples. Knockdown of the BCLAF1 protein isoform resulting from exon5a inclusion inhibited growth and that its overexpression increased tumorigenic potential. We also found that the splicing factor SRSF10 stimulates inclusion of exon5a and has growth-inducing activity. Importantly, the upregulation of SRSF10 expression observed in clinical CRC samples parallels the increased inclusion of BCLAF1 exon5a, both of which are associated with higher tumour grade. These findings identify SRSF10 as a key regulator of BCLAF1 pre-mRNA splicing and the maintenance of oncogenic features in human colon cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.