In this paper, we design a free-form off-axis three-mirror optical system with a low
f
-number and compact structure, which can be used as an infrared reflection imager. The initial structure is calculated from the near-axis optical transfer matrix based on third-order aberration theory. Particular constraints are designed to install all mirrors on the same substrate for simultaneous milling, which reduces the processing difficulty and effectively avoids errors caused by component assembly. Zernike free-form surfaces are introduced to correct aberrations. This optical system has a field of view of
5
∘
×
5
∘
and an
f
-number of 1.82; the modulation transfer function of the system is higher than 0.6 at 30 lp/mm. The results of the tolerance assignment of the system were verified by the Monte Carlo method, and the machining tolerance is reasonable and easy to achieve. This design not only improves the optical performance of the system but also enhances the feasibility of manufacturing.
In order to improve the performance and simplify the structure of an optical antenna for a space laser communication system, we design a free-form off-axis three-mirror optical antenna with an integrated primary/tertiary-mirror structure. The adoption of the integrated primary/tertiary-mirror structure improves efficiency of light energy utilization and reduces the complexity of optical processing and assembly. The introduction of free-form optical elements and optical structure constraints helps to correct the off-axis aberration and realize a large field of view. The obtained optical antenna has the magnification of five times and field of view of
2.4
∘
×
2.4
∘
. The image quality obtained here reaches the diffraction-limited level. At the communication wavelength of 808 nm, the wavefront error is better than
λ
/
22
, and the system has a high energy concentration. The proposed optical antenna could not only improve tracking accuracy of the optical antenna in space but also greatly reduce the complexity of the laser communication system. It has reference significance and application value for free-space laser communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.