EndoMS is a recently identified mismatch specific endonuclease in Thermococcales of Archaea and Mycobacteria of Bacteria. The homologs of EndoMS are conserved in Archaea and Actinobacteria, where classic MutS-MutL-mediated DNA mismatch repair pathway is absent or non-functional. Here, we report a study on the in vitro mismatch cleavage activity and in vivo function of an EndoMS homolog (SisEndoMS) from Sulfolobus islandicus REY15A, the model archaeon belonging to Crenarchaeota. SisEndoMS is highly active on duplex DNA containing G/T, G/G, and T/T mismatches. Interestingly, the cleavage activity of SisEndoMS is stimulated by the heterotrimeric PCNAs, and when Mn2+ was used as the co-factor instead of Mg2+, SisEndoMS was also active on DNA substrates containing C/T or A/G mismatches, suggesting that the endonuclease activity can be regulated by ion co-factors and accessory proteins. We compared the spontaneous mutation rate of the wild type strain REY15A and ∆endoMS by counter selection against 5-fluoroorotic acid (5-FOA). The endoMS knockout mutant had much higher spontaneous mutation rate (5.06 × 10−3) than that of the wild type (4.6 × 10−6). A mutation accumulation analysis also showed that the deletion mutant had a higher mutation occurrence than the wild type, with transition mutation being the dominant, suggesting that SisEndoMS is responsible for mutation avoidance in this hyperthermophilic archaeon. Overexpression of the wild type SisEndoMS in S. islandicus resulted in retarded growth and abnormal cell morphology, similar to strains overexpressing Hje and Hjc, the Holliday junction endonucleases. Transcriptomic analysis revealed that SisEndoMS overexpression led to upregulation of distinct gene including the CRISPR-Cas IIIB system, methyltransferases, and glycosyltransferases, which are mainly localized to specific regions in the chromosome. Collectively, our results support that EndoMS proteins represent a noncanonical DNA repair pathway in Archaea. The mechanism of the mismatch repair pathway in Sulfolobus which have a single chromosome is discussed.
Lonely Guy (LOG) proteins are important enzymes in cellular organisms, which catalyze the final step in the production of biologically active cytokinins via dephosphoribosylation. LOG proteins are vital enzymes in plants for the activation of cytokinin precursors, which is crucial for plant growth and development. In fungi and bacteria, LOGs are implicated in pathogenic or nonpathogenic interactions with their plant hosts. However, LOGs have also been identified in the human pathogen Mycobacterium tuberculosis, and the accumulation of cytokinin-degraded products, aldehydes, within bacterial cells is lethal to the bacterium in the presence of nitric oxide, suggesting diverse roles of LOGs in various species. In this study, we conducted biochemical and genetic analysis of a LOG homologue, SiRe_0427, from the hyperthermophilic archaeon Sulfolobus islandicus REY15A. The protein possessed the LOG motif GGGxGTxxE and exhibited phosphoribohydrolase activity on adenosine-5-monophosphate (AMP), similar to LOGs from eukaryotes and bacteria. Alanine mutants at either catalytic residues or substrate binding sites lost their activity, resembling other known LOGs. SiRe_0427 is probably a homotetramer, as revealed by size exclusion chromatography and chemical cross-linking. We found that the gene encoding SiRe_0427 could be knocked out; however, the Δsire_0427 strain exhibited no apparent difference in growth compared to the wild type, nor did it show any difference in sensitivity to UV irradiation under our laboratory growth conditions. Overall, these findings indicate that archaeal LOG homologue is active as a phosphoribohydrolase. IMPORTANCE Lonely Guy (LOG) is an essential enzyme for the final biosynthesis of cytokinins, which regulate almost every aspect of growth and development in plants. LOG protein was originally discovered 12 years ago in a strain of Oryza sativa with a distinct floral phenotype of a single stamen. Recently, the presence of LOG homologues has been reported in Mycobacterium tuberculosis, an obligate human pathogen. To date, active LOG proteins have been reported in plants, pathogenic and nonpathogenic fungi, and bacteria, but there have been no experimental reports of LOG protein from archaea. In the current work, we report the identification of a LOG homologue active on AMP from Sulfolobus islandicus REY15A, a thermophilic archaeon. The protein likely forms a tetramer in solution and represents a novel evolutionary lineage. The results presented here expand our knowledge regarding proteins with phosphoribohydrolase activities and open an avenue for studying signal transduction networks of archaea and potential applications of LOG enzymes in agriculture and industry.
Kinase, putative Endopeptidase, and Other Proteins of Small size (KEOPS) is a multisubunit protein complex conserved in eukaryotes and archaea. It is composed of Pcc1, Kae1, Bud32, Cgi121, and Gon7 in eukaryotes and is primarily involved in N 6 -threonylcarbamoyl adenosine (t 6 A) modification of transfer RNAs (tRNAs). Recently, it was reported that KEOPS participates in homologous recombination (HR) repair in yeast. To characterize the KEOPS in archaea (aKEOPS), we conducted genetic and biochemical analyses of its encoding genes in the hyperthermophilic archaeon Saccharolobus islandicus. We show that aKEOPS also possesses five subunits, Pcc1, Kae1, Bud32, Cgi121, and Pcc1-like (or Gon7-like), just like eukaryotic KEOPS. Pcc1-like has physical interactions with Kae1 and Pcc1 and can mediate the monomerization of the dimeric subcomplex (Kae1-Pcc1-Pcc1-Kae1), suggesting that Pcc1-like is a functional homolog of the eukaryotic Gon7 subunit. Strikingly, none of the genes encoding aKEOPS subunits, including Pcc1 and Pcc1-like, can be deleted in the wild type and in a t 6 A modification complementary strain named TsaKI, implying that the aKEOPS complex is essential for an additional cellular process in this archaeon. Knock-down of the Cgi121 subunit leads to severe growth retardance in the wild type that is partially rescued in TsaKI. These results suggest that aKEOPS plays an essential role independent of the cellular t 6 A modification level. In addition, archaeal Cgi121 possesses dsDNA-binding activity that relies on its tRNA 3ʹ CCA tail binding module. Our study clarifies the subunit organization of archaeal KEOPS and suggests an origin of eukaryotic Gon7. The study also reveals a possible link between the function in t 6 A modification and the additional function, presumably HR.
Forkhead-associated (FHA) domain proteins specifically recognize phosphorylated threonine via the FHA domain and are involved in signal transduction in various processes especially DNA damage response (DDR) and cell cycle regulation in eukaryotes. Although FHA domain proteins are found in prokaryotes, archaea, and bacteria, their functions are far less clear as compared to the eukaryotic counterparts, and it has not been studied whether archaeal FHA proteins play a role in DDR. Here, we have characterized an FHA protein from the hyperthermophilic Crenarchaeon Saccharolobus islandicus (SisArnA) by genetic, biochemical, and transcriptomic approaches. We find that Δ SisarnA exhibits higher resistance to DNA damage agent 4-nitroquinoline 1-oxide (NQO). The transcription of ups genes, encoding the proteins for pili-mediated cell aggregation and cell survival after DDR, is elevated in Δ SisarnA . The interactions of SisArnA with two predicted partners, SisvWA1 (SisArnB) and SisvWA2 (designated as SisArnE), were enhanced by phosphorylation in vitro . Δ SisarnB displays higher resistance to NQO than the wild type. In addition, the interaction between SisArnA and SisArnB, which is reduced in the NQO-treated cells, is indispensable for DNA binding in vitro . These indicate that SisArnA and SisArnB work together to inhibit the expression of ups genes in vivo . Interestingly, Δ SisarnE is more sensitive to NQO than the wild type, and the interaction between SisArnA and SisArnE is strengthened after NQO treatment, suggesting a positive role of SisArnE in DDR. Finally, transcriptomic analysis reveals that SisArnA represses a number of genes, implying that archaea apply the FHA/phospho-peptide recognition module for extensive transcriptional regulation. IMPORTANCE Cellular adaption to diverse environmental stresses requires a signal sensor and transducer for cell survival. Protein phosphorylation and its recognition by forkhead-associated (FHA) domain proteins are widely used for signal transduction in eukaryotes. Although FHA proteins exist in archaea and bacteria, investigation of their functions, especially those in DNA damage response (DDR), is limited. Therefore, the evolution and functional conservation of FHA proteins in the three domains of life is still a mystery. Here, we find that an FHA protein from the hyperthermophilic Crenarchaeon Saccharolobus islandicus (SisArnA) represses the transcription of pili genes together with its phosphorylated partner SisArnB. SisArnA derepression facilitates DNA exchange and repair in the presence of DNA damage. The fact that more genes including a dozen of those involved in DDR are found to be regulated by SisArnA implies that the FHA/phosphorylation module may serve as an important signal transduction pathway for transcriptional regulation in archaeal DDR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.