Magnesium composite foams with 10 vol. % of hollow ceramic microspheres (CMs) were prepared by modified melt foaming method. Specimens with homogeneous pore structures were subjected to various heating temperature (150, 250, 320, 400, and 500 • C, respectively) and enduring times (1, 2, 4, 6, and 24 h, respectively). Evolution of microstructure and mechanical properties of the samples, before and after the heating processes were examined by applying X-ray diffraction technique (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and quasi-static uniaxial compression test. The results showed that as heating temperature and enduring time increasing, β-Mg 17 Al 12 phases gradually dissolved, resulting in a solid-solution strengthening effect. Meanwhile, internal stress relaxation in the matrix leads to the decrease of yield strength and micro hardness of the specimens. When compared with the unheated foams, the treated specimens possessed lower micro-hardness, yield strength, and energy absorption capacity due to the dissolution of β-Mg 17 Al 12 phases and the release of internal stress. However, higher strain hardening exponents for almost all of the treated composite foams were observed and the reasons were discussed. It is proposed that more factors should be taken into account when using heated composite foams in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.